January  2021, 41(1): 61-86. doi: 10.3934/dcds.2020218

Minimal collision arcs asymptotic to central configurations

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

Received  January 2020 Revised  March 2020 Published  May 2020

We are concerned with the analysis of finite time collision trajectories for a class of singular anisotropic homogeneous potentials of degree $ -\alpha $, with $ \alpha\in(0,2) $ and their lower order perturbations. It is well known that, under reasonable generic assumptions, the asymptotic normalized configuration converges to a central configuration. Using McGehee coordinates, the flow can be extended to the collision manifold having central configurations as stationary points, endowed with their stable and unstable manifolds. We focus on the case when the asymptotic central configuration is a global minimizer of the potential on the sphere: our main goal is to show that, in a rather general setting, the local stable manifold coincides with that of the initial data of minimal collision arcs. This characterisation may be extremely useful in building complex trajectories with a broken geodesic method. The proof takes advantage of the generalised Sundman's monotonicity formula.

Citation: Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218
References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser Boston Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.  Google Scholar

[2]

V. Arnol'd, Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, New York, [1989], Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

V. Barutello, G. Canneori and S. Terracini, Symbolic dynamics for the anisotropic $N$-centre problem, in preparation, 2020. Google Scholar

[4]

V. Barutello, D. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN, 2008, Art. ID rnn 069, 78pp.  Google Scholar

[5]

V. Barutello, X. Hu, A. Portaluri and S. Terracini, An Index theory for asymptotic motions under singular potentials, preprint 2018, arXiv: 1705.01291. Google Scholar

[6]

V. BarutelloS. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., 207 (2013), 583-609.  doi: 10.1007/s00205-012-0565-9.  Google Scholar

[7]

V. BarutelloS. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations, 49 (2014), 391-429.  doi: 10.1007/s00526-012-0587-z.  Google Scholar

[8]

A. BoscagginW. Dambrosio and D. Papini, Parabolic solutions for the planar $N$-centre problem: Multiplicity and scattering, Ann. Mat. Pura Appl. (4), 197 (2018), 869-882.  doi: 10.1007/s10231-017-0707-7.  Google Scholar

[9]

A. BoscagginW. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Ration. Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[10]

R. Devaney, Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251.  doi: 10.1007/BF01403170.  Google Scholar

[11]

R. Devaney, Singularities in classical mechanical systems, in Ergodic Theory and Dynamical Systems, I (College Park, Md., 1979–80), vol. 10 of Progr. Math., Birkhäuser Boston, Mass., 1981,211–333. doi: 10.1007/978-1-4899-6696-4_7.  Google Scholar

[12]

R. Devaney, Blowing up singularities in classical mechanical systems, Amer. Math. Monthly, 89 (1982), 535-552.  doi: 10.1080/00029890.1982.11995493.  Google Scholar

[13]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[14]

M. Gutzwiller, The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152.  doi: 10.1063/1.1666164.  Google Scholar

[15]

M. Gutzwiller, Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823.  doi: 10.1063/1.523310.  Google Scholar

[16]

M. Gutzwiller, Periodic orbits in the anisotropic Kepler problem, in Classical Mechanics and Dynamical Systems (Medford, Mass., 1979), vol. 70 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1981, 69–90.  Google Scholar

[17]

M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third edition, Elsevier/Academic Press, Amsterdam, 2013. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[18]

X. Hu and G. Yu, An index theory for zero energy solutions of the planar anisotropic kepler problem, Communications in Mathematical Physics, 361 (2018), 709-736.  doi: 10.1007/s00220-018-3184-y.  Google Scholar

[19]

N. Hulkower and D. Saari, On the manifolds of total collapse orbits and of completely parabolic orbits for the $n$-body problem, J. Differential Equations, 41 (1981), 27-43.  doi: 10.1016/0022-0396(81)90051-6.  Google Scholar

[20]

A. Knauf, Mathematical Physics: Classical Mechanics, vol. 109 of Unitext, Springer-Verlag, Berlin, 2018, Translated from the 2017 second German edition by Jochen Denzler. doi: 10.1007/978-3-662-55774-7.  Google Scholar

[21]

E. Maderna and A. Venturelli, Globally minimizing parabolic motions in the Newtonian $N$-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313.  doi: 10.1007/s00205-008-0175-8.  Google Scholar

[22]

R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.  doi: 10.1007/BF01390175.  Google Scholar

[23]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions, Comment. Math. Helv., 56 (1981), 524-557.   Google Scholar

[24]

R. MoeckelR. Montgomery and A. Venturelli, From brake to syzygy, Arch. Ration. Mech. Anal., 204 (2012), 1009-1060.  doi: 10.1007/s00205-012-0502-y.  Google Scholar

[25]

K. Sundman, Mémoire sur le problème des trois corps, Acta Math., 36 (1913), 105-179.  doi: 10.1007/BF02422379.  Google Scholar

[26]

G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/140.  Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, v. 5, Princeton University Press, Princeton, N. J., 1941.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser Boston Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.  Google Scholar

[2]

V. Arnol'd, Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, New York, [1989], Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

V. Barutello, G. Canneori and S. Terracini, Symbolic dynamics for the anisotropic $N$-centre problem, in preparation, 2020. Google Scholar

[4]

V. Barutello, D. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN, 2008, Art. ID rnn 069, 78pp.  Google Scholar

[5]

V. Barutello, X. Hu, A. Portaluri and S. Terracini, An Index theory for asymptotic motions under singular potentials, preprint 2018, arXiv: 1705.01291. Google Scholar

[6]

V. BarutelloS. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., 207 (2013), 583-609.  doi: 10.1007/s00205-012-0565-9.  Google Scholar

[7]

V. BarutelloS. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations, 49 (2014), 391-429.  doi: 10.1007/s00526-012-0587-z.  Google Scholar

[8]

A. BoscagginW. Dambrosio and D. Papini, Parabolic solutions for the planar $N$-centre problem: Multiplicity and scattering, Ann. Mat. Pura Appl. (4), 197 (2018), 869-882.  doi: 10.1007/s10231-017-0707-7.  Google Scholar

[9]

A. BoscagginW. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Ration. Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[10]

R. Devaney, Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251.  doi: 10.1007/BF01403170.  Google Scholar

[11]

R. Devaney, Singularities in classical mechanical systems, in Ergodic Theory and Dynamical Systems, I (College Park, Md., 1979–80), vol. 10 of Progr. Math., Birkhäuser Boston, Mass., 1981,211–333. doi: 10.1007/978-1-4899-6696-4_7.  Google Scholar

[12]

R. Devaney, Blowing up singularities in classical mechanical systems, Amer. Math. Monthly, 89 (1982), 535-552.  doi: 10.1080/00029890.1982.11995493.  Google Scholar

[13]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[14]

M. Gutzwiller, The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152.  doi: 10.1063/1.1666164.  Google Scholar

[15]

M. Gutzwiller, Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823.  doi: 10.1063/1.523310.  Google Scholar

[16]

M. Gutzwiller, Periodic orbits in the anisotropic Kepler problem, in Classical Mechanics and Dynamical Systems (Medford, Mass., 1979), vol. 70 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1981, 69–90.  Google Scholar

[17]

M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third edition, Elsevier/Academic Press, Amsterdam, 2013. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[18]

X. Hu and G. Yu, An index theory for zero energy solutions of the planar anisotropic kepler problem, Communications in Mathematical Physics, 361 (2018), 709-736.  doi: 10.1007/s00220-018-3184-y.  Google Scholar

[19]

N. Hulkower and D. Saari, On the manifolds of total collapse orbits and of completely parabolic orbits for the $n$-body problem, J. Differential Equations, 41 (1981), 27-43.  doi: 10.1016/0022-0396(81)90051-6.  Google Scholar

[20]

A. Knauf, Mathematical Physics: Classical Mechanics, vol. 109 of Unitext, Springer-Verlag, Berlin, 2018, Translated from the 2017 second German edition by Jochen Denzler. doi: 10.1007/978-3-662-55774-7.  Google Scholar

[21]

E. Maderna and A. Venturelli, Globally minimizing parabolic motions in the Newtonian $N$-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313.  doi: 10.1007/s00205-008-0175-8.  Google Scholar

[22]

R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.  doi: 10.1007/BF01390175.  Google Scholar

[23]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions, Comment. Math. Helv., 56 (1981), 524-557.   Google Scholar

[24]

R. MoeckelR. Montgomery and A. Venturelli, From brake to syzygy, Arch. Ration. Mech. Anal., 204 (2012), 1009-1060.  doi: 10.1007/s00205-012-0502-y.  Google Scholar

[25]

K. Sundman, Mémoire sur le problème des trois corps, Acta Math., 36 (1913), 105-179.  doi: 10.1007/BF02422379.  Google Scholar

[26]

G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/140.  Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, v. 5, Princeton University Press, Princeton, N. J., 1941.  Google Scholar

Figure 1.  The local stable manifold characterized in Remark 3.3
[1]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[2]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[6]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[11]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[12]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[13]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[14]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[15]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[17]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[18]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[19]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[20]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (115)
  • HTML views (279)
  • Cited by (0)

[Back to Top]