
-
Previous Article
Notes on the values of volume entropy of graphs
- DCDS Home
- This Issue
- Next Article
Renormalizing an infinite rational IET
1. | The City College of New York New York, NY, 10031, USA |
2. | CUNY Graduate Center New York, NY, 10016, USA |
3. | University of Toronto Toronto, ON, M5S 2E4, Canada |
We study an interval exchange transformation of $ [0, 1] $ formed by cutting the interval at the points $ \frac{1}{n} $ and reversing the order of the intervals. We find that the transformation is periodic away from a Cantor set of Hausdorff dimension zero. On the Cantor set, the dynamics are nearly conjugate to the $ 2 $–adic odometer.
References:
[1] |
S. Akiyama and E. Harriss,
Pentagonal domain exchange, Discrete Contin. Dyn. Syst., 33 (2013), 4375-4400.
doi: 10.3934/dcds.2013.33.4375. |
[2] |
J. P. Bowman,
The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.
doi: 10.1007/s10711-012-9762-9. |
[3] |
R. Chamanara,
Affine automorphism groups of surfaces of infinite type, In the Tradition of Ahlfors and Bers, III, Contemp. Math., American Mathematical Society, Providence, RI, 355 (2004), 123-145.
doi: 10.1090/conm/355/06449. |
[4] |
V. Delecroix, Package Surface_Dynamics for SageMath, the Sage Mathematics Software System, 2018, http://www.sagemath.org, https://gitlab.com/videlec/surface_dynamics. Google Scholar |
[5] |
V. Delecroix, P. Hubert and F. Valdez, Infinite Translation Surfaces in the Wild, To appear. Google Scholar |
[6] |
T. Downarowicz,
Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., American Mathematical Society, Providence, RI, 385 (2005), 7-37.
doi: 10.1090/conm/385/07188. |
[7] |
A. Goetz, A self-similar example of a piecewise isometric attractor, Dynamical Systems: From Crystal to Chaos, World Scientific, River Edge, NJ, (2000), 248–258. |
[8] |
A. Goetz, Piecewise isometries - an emerging area of dynamical systems, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 135–144. |
[9] |
W. P. Hooper,
Renormalization of polygon exchange maps arising from corner percolation, Inventiones Mathematicae, 191 (2013), 255-320.
doi: 10.1007/s00222-012-0393-4. |
[10] |
K. Lindsey and R. Treviño,
Infinite type flat surface models of ergodic systems, Discrete Contin. Dyn. Syst., 36 (2016), 5509-5553.
doi: 10.3934/dcds.2016043. |
[11] |
H. Masur and S. Tabachnikov,
Rational billiards and flat structures, Handbook of Dynamical Systems, North-Holland, Amsterdam, 1A (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[12] |
P. Matilla, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623813.![]() ![]() |
[13] |
N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861. |
[14] |
R. E. Schwartz, The Octagonal PETs, Mathematical Surveys and Monographs, 197. American Mathematical Society, Providence, RI, 2014.
doi: 10.1090/surv/197. |
[15] |
C. E. Silva, Invitation to Ergodic Theory, Student Mathematical Library, 42. American Mathematical Society, Providence, RI, 2008. |
[16] |
R. Yi, The triple lattice PETs, Experimental Mathematics, 28, (2019), 456–474.
doi: 10.1080/10586458.2017.1422159. |
show all references
References:
[1] |
S. Akiyama and E. Harriss,
Pentagonal domain exchange, Discrete Contin. Dyn. Syst., 33 (2013), 4375-4400.
doi: 10.3934/dcds.2013.33.4375. |
[2] |
J. P. Bowman,
The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.
doi: 10.1007/s10711-012-9762-9. |
[3] |
R. Chamanara,
Affine automorphism groups of surfaces of infinite type, In the Tradition of Ahlfors and Bers, III, Contemp. Math., American Mathematical Society, Providence, RI, 355 (2004), 123-145.
doi: 10.1090/conm/355/06449. |
[4] |
V. Delecroix, Package Surface_Dynamics for SageMath, the Sage Mathematics Software System, 2018, http://www.sagemath.org, https://gitlab.com/videlec/surface_dynamics. Google Scholar |
[5] |
V. Delecroix, P. Hubert and F. Valdez, Infinite Translation Surfaces in the Wild, To appear. Google Scholar |
[6] |
T. Downarowicz,
Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., American Mathematical Society, Providence, RI, 385 (2005), 7-37.
doi: 10.1090/conm/385/07188. |
[7] |
A. Goetz, A self-similar example of a piecewise isometric attractor, Dynamical Systems: From Crystal to Chaos, World Scientific, River Edge, NJ, (2000), 248–258. |
[8] |
A. Goetz, Piecewise isometries - an emerging area of dynamical systems, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 135–144. |
[9] |
W. P. Hooper,
Renormalization of polygon exchange maps arising from corner percolation, Inventiones Mathematicae, 191 (2013), 255-320.
doi: 10.1007/s00222-012-0393-4. |
[10] |
K. Lindsey and R. Treviño,
Infinite type flat surface models of ergodic systems, Discrete Contin. Dyn. Syst., 36 (2016), 5509-5553.
doi: 10.3934/dcds.2016043. |
[11] |
H. Masur and S. Tabachnikov,
Rational billiards and flat structures, Handbook of Dynamical Systems, North-Holland, Amsterdam, 1A (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[12] |
P. Matilla, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623813.![]() ![]() |
[13] |
N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861. |
[14] |
R. E. Schwartz, The Octagonal PETs, Mathematical Surveys and Monographs, 197. American Mathematical Society, Providence, RI, 2014.
doi: 10.1090/surv/197. |
[15] |
C. E. Silva, Invitation to Ergodic Theory, Student Mathematical Library, 42. American Mathematical Society, Providence, RI, 2008. |
[16] |
R. Yi, The triple lattice PETs, Experimental Mathematics, 28, (2019), 456–474.
doi: 10.1080/10586458.2017.1422159. |


[1] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[2] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[3] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[4] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[5] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[6] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[7] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[8] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[9] |
Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149 |
[10] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[11] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[12] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[13] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[14] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[15] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[16] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[17] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[18] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[19] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[20] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]