September  2020, 40(9): 5131-5148. doi: 10.3934/dcds.2020222

Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions

1. 

School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

2. 

School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China

3. 

Laboratoire de Math. CNRS-UMR 6620, Université Clermont-Auvergne, Clermont Ferrand, 63177 Aubière, France

* Corresponding author: Ruinan Li

Received  April 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by "the Fundamental Research Funds for the Central Universities'' grant 30920021145

In this paper, we find some general and efficient sufficient conditions for the exponential convergence $ W_{1,d}(P_t(x,\cdot), P_t(y,\cdot) )\le Ke^{-\delta t}d(x,y) $ for the semigroup $ (P_t) $ of one-dimensional diffusion. Moreover, some sharp estimates of the involved constants $ K\ge 1, \delta>0 $ are provided. Those general results are illustrated by a series of examples.

Citation: Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222
References:
[1]

F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Studia Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar

[2]

M. F. Chen, From Markov Chains to Nonequilibrium Partcile Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. doi: 10.1142/1389.  Google Scholar

[3]

M. F. Chen, Analytic proof of dual variational formula for the first eigenvalue in dimension one, Sci. Sin. A, 42 (1999), 805-815.  doi: 10.1007/BF02884267.  Google Scholar

[4]

M. F. Chen, Eigenvalues, Inequalities and Ergodic Theory, Springer-Verlag London, Ltd., London, 2005.  Google Scholar

[5]

M. F. Chen and F.-Y. Wang, Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal., 131 (1995), 345-363.  doi: 10.1006/jfan.1995.1092.  Google Scholar

[6]

M. F. Chen and F.-Y. Wang, Estimation of spectral gap for elliptic operators, Trans. Am. Math. Soc., 349 (1997), 1239-1267.  doi: 10.1090/S0002-9947-97-01812-6.  Google Scholar

[7]

L. Y. Cheng and L. M. Wu, Centered Sobolev inequality and exponential convergence in $\Phi$-entropy, Statistics and Probability Letters, 148 (2019), 101-111.  doi: 10.1016/j.spl.2019.01.002.  Google Scholar

[8]

H. Djellout, $L^p$-Uniqueness for One-Dimensional Diffusions, Mémoire de D.E.A Université Blaise Pascal, Clermont-Ferrand, 1997. Google Scholar

[9]

H. Djellout and L. M. Wu, Lipschitzian norm estimate of one-dimention Poisson equations and applications, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 450-465.  doi: 10.1214/10-AIHP360.  Google Scholar

[10]

A. Eberle, Uniqueness and Non-Uniqueness of Semigroups Generated by Sigular Diffusion Operators, Lecture Notes in Mathmatics, 1718. Springer-Verlag, Berlin, 1999. doi: 10.1007/BFb0103045.  Google Scholar

[11]

A. Eberle, Reflection couplings and contraction rates for diffusions, Probability Theory and Related Fields, 166 (2016), 851-886.  doi: 10.1007/s00440-015-0673-1.  Google Scholar

[12]

A. EberleA. Guillin and R. Zimmer, Quantitative Harris theorem for diffusions and Mckean-Vlasov processes, Trans. Amer. Math. Soc., 371 (2019), 7135-7137.  doi: 10.1090/tran/7576.  Google Scholar

[13]

A. EberleA. Guillin and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics, The Annals of Probability, 47 (2019), 1982-2010.  doi: 10.1214/18-AOP1299.  Google Scholar

[14]

A. GuillinC. LéonardL. M. Wu and N. Yao, Transportation-information inequalities for Markov processes, Probab. Theory Relat. Fields., 144 (2009), 669-695.  doi: 10.1007/s00440-008-0159-5.  Google Scholar

[15]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam, Kodansha, Ltd., Tokyo, 1989.  Google Scholar

[16] K. ItȏH. P. Mckean and Jr ., Diffusion Processes and Their Sample Paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125 Academic Press, Inc., Publishers, New York, Springer-Verlag, Berlin-New York, 1965.   Google Scholar
[17]

R. Latala and K. Oleszkiewicz, Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis, Lect. Notes in Math., Springer, Berlin, 1745 (2000), 147-168.  doi: 10.1007/BFb0107213.  Google Scholar

[18]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[19]

D. J. Luo and J. Wang, Exponential convergence in Wasserstein distance for diffusion processes without uniform dissipativity, Math. Nachr., 289 (2016), 1909-1926.   Google Scholar

[20]

S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. doi: 10.1007/978-1-4471-3267-7.  Google Scholar

[21]

M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[22]

F. Y. Wang, Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature, preprint, arXiv: 1603.05749. Google Scholar

[23]

L. M. Wu, Essential spectral radius for Markov semigroups. I. Discrete time case, Probab. Theory Raleted Fields, 128 (2004), 255-321.  doi: 10.1007/s00440-003-0304-0.  Google Scholar

show all references

References:
[1]

F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Studia Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar

[2]

M. F. Chen, From Markov Chains to Nonequilibrium Partcile Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. doi: 10.1142/1389.  Google Scholar

[3]

M. F. Chen, Analytic proof of dual variational formula for the first eigenvalue in dimension one, Sci. Sin. A, 42 (1999), 805-815.  doi: 10.1007/BF02884267.  Google Scholar

[4]

M. F. Chen, Eigenvalues, Inequalities and Ergodic Theory, Springer-Verlag London, Ltd., London, 2005.  Google Scholar

[5]

M. F. Chen and F.-Y. Wang, Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal., 131 (1995), 345-363.  doi: 10.1006/jfan.1995.1092.  Google Scholar

[6]

M. F. Chen and F.-Y. Wang, Estimation of spectral gap for elliptic operators, Trans. Am. Math. Soc., 349 (1997), 1239-1267.  doi: 10.1090/S0002-9947-97-01812-6.  Google Scholar

[7]

L. Y. Cheng and L. M. Wu, Centered Sobolev inequality and exponential convergence in $\Phi$-entropy, Statistics and Probability Letters, 148 (2019), 101-111.  doi: 10.1016/j.spl.2019.01.002.  Google Scholar

[8]

H. Djellout, $L^p$-Uniqueness for One-Dimensional Diffusions, Mémoire de D.E.A Université Blaise Pascal, Clermont-Ferrand, 1997. Google Scholar

[9]

H. Djellout and L. M. Wu, Lipschitzian norm estimate of one-dimention Poisson equations and applications, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 450-465.  doi: 10.1214/10-AIHP360.  Google Scholar

[10]

A. Eberle, Uniqueness and Non-Uniqueness of Semigroups Generated by Sigular Diffusion Operators, Lecture Notes in Mathmatics, 1718. Springer-Verlag, Berlin, 1999. doi: 10.1007/BFb0103045.  Google Scholar

[11]

A. Eberle, Reflection couplings and contraction rates for diffusions, Probability Theory and Related Fields, 166 (2016), 851-886.  doi: 10.1007/s00440-015-0673-1.  Google Scholar

[12]

A. EberleA. Guillin and R. Zimmer, Quantitative Harris theorem for diffusions and Mckean-Vlasov processes, Trans. Amer. Math. Soc., 371 (2019), 7135-7137.  doi: 10.1090/tran/7576.  Google Scholar

[13]

A. EberleA. Guillin and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics, The Annals of Probability, 47 (2019), 1982-2010.  doi: 10.1214/18-AOP1299.  Google Scholar

[14]

A. GuillinC. LéonardL. M. Wu and N. Yao, Transportation-information inequalities for Markov processes, Probab. Theory Relat. Fields., 144 (2009), 669-695.  doi: 10.1007/s00440-008-0159-5.  Google Scholar

[15]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam, Kodansha, Ltd., Tokyo, 1989.  Google Scholar

[16] K. ItȏH. P. Mckean and Jr ., Diffusion Processes and Their Sample Paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125 Academic Press, Inc., Publishers, New York, Springer-Verlag, Berlin-New York, 1965.   Google Scholar
[17]

R. Latala and K. Oleszkiewicz, Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis, Lect. Notes in Math., Springer, Berlin, 1745 (2000), 147-168.  doi: 10.1007/BFb0107213.  Google Scholar

[18]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[19]

D. J. Luo and J. Wang, Exponential convergence in Wasserstein distance for diffusion processes without uniform dissipativity, Math. Nachr., 289 (2016), 1909-1926.   Google Scholar

[20]

S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. doi: 10.1007/978-1-4471-3267-7.  Google Scholar

[21]

M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[22]

F. Y. Wang, Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature, preprint, arXiv: 1603.05749. Google Scholar

[23]

L. M. Wu, Essential spectral radius for Markov semigroups. I. Discrete time case, Probab. Theory Raleted Fields, 128 (2004), 255-321.  doi: 10.1007/s00440-003-0304-0.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (116)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]