September  2020, 40(9): 5149-5171. doi: 10.3934/dcds.2020223

Contributions to the study of Anosov geodesic flows in non-compact manifolds

1. 

Departamento de Matemática, Universidade Federal do Piauí, Centro de Ciências da Natureza - Avenida Universitária, Inanga, Teresina 64049-550, Brazil

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Rio de Janeiro 21941-909, Brazil

* Corresponding author: Sergio Romaña

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: Ítalo Melo were partially supported by FAPEPI

In this paper, we study the relations between curvature and Anosov geodesic flow. More specifically, we prove that when the geodesic flow of a complete manifold without conjugate points is of the Anosov type, then the average of the sectional curvature in tangent planes along geodesics is negative and uniformly away from zero. Moreover, if a surface has no focal points, then the latter condition is sufficient to obtain that the geodesic flow is of Anosov type.

Citation: Ítalo Melo, Sergio Romaña. Contributions to the study of Anosov geodesic flows in non-compact manifolds. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5149-5171. doi: 10.3934/dcds.2020223
References:
[1]

D. V. Anosov, Geodesic Flow on Compact Manifolds of Negative Curvature, American Mathematical Society, Providence, R.I., 1969.  Google Scholar

[2]

J. Bolton, Conditions under which a geodesic flow is Anosov, Mathematische Annalen, 240 (1979), 103-113.  doi: 10.1007/BF01364627.  Google Scholar

[3]

K. Burns and V. Matveev, Open problems and questions about geodesics, Ergodic Theory and Dynamical Systems, 1–44. doi: 10.1017/etds.2019.73.  Google Scholar

[4]

V. J. Donnay and C. C. Pugh, Anosov geodesic flows for embedded surfaces, Geometric Methods in Dynamics. II. Astérisque, 18 (2003), 61-69.   Google Scholar

[5]

Í. Dowell and S. Romaña, A rigidity theorem for anosov geodesic flows, preprint, arXiv: 1709.09524. Google Scholar

[6]

P. Eberlein, When is a geodesic flow of anosov type? I, J. Differential Geom., 8 (1973), 437-463.  doi: 10.4310/jdg/1214431801.  Google Scholar

[7]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Inventiones Mathematicae, 69 (1982), 375-392.  doi: 10.1007/BF01389360.  Google Scholar

[8]

L. W. Green, A theorem of E. hopf, Michigan Math. J., 5 (1958), 31-34.  doi: 10.1307/mmj/1028998009.  Google Scholar

[9]

F. F. Guimarães, The integral of the scalar curvature of complete manifolds without conjugate points, J. Differential Geom., 36 (1992), 651-662.  doi: 10.4310/jdg/1214453184.  Google Scholar

[10]

R. Gulliver, On the variety of Manifolds without conjugate points, Transactions of the American Mathematical Society, 210 (1975), 185-201.  doi: 10.1090/S0002-9947-1975-0383294-0.  Google Scholar

[11]

E. Hopf, Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences, 34 (1948), 47-51.  doi: 10.1073/pnas.34.2.47.  Google Scholar

[12]

W. Klingenberg, Riemannian manifolds with geodesic flow of anosov type, Annals of Mathematics, 99 (1974), 1-13.  doi: 10.2307/1971011.  Google Scholar

[13]

G. Knieper, Hyperbolic dynamics and Riemannian geometry, Handbook of Dymanical Systems, North-Holland, Amsterdam, 1A (2002), 453-545.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[14]

R. Mañé, On a theorem of Klingenberg, Dynamical Systems and Bifurcation Theory, Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 160 (1987), 319-345.   Google Scholar

[15] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.   Google Scholar
[16]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180. Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[17]

F. Riquelme, Counterexamples to Ruelle's inequality in the noncompact case, Annales de l'Institut Fourier, 67 (2017), 23-41.  doi: 10.5802/aif.3076.  Google Scholar

[18]

F. Riquelme, Ruelle's inequality in negative curvature, Discrete Contin. Dyn. Syst., 38 (2018), 2809-2825.  doi: 10.3934/dcds.2018119.  Google Scholar

[19]

S. Rosenberg, Shorter notes: Gauss-bonnet theorems for noncompact surfaces, Proceedings of the American Mathematical Society, 86 (1982), 184-185.  doi: 10.2307/2044423.  Google Scholar

[20]

R. O. Ruggiero, On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.  doi: 10.1007/BF02571508.  Google Scholar

[21]

R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom., 18 (1983), 791-809.  doi: 10.4310/jdg/1214438183.  Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesic Flow on Compact Manifolds of Negative Curvature, American Mathematical Society, Providence, R.I., 1969.  Google Scholar

[2]

J. Bolton, Conditions under which a geodesic flow is Anosov, Mathematische Annalen, 240 (1979), 103-113.  doi: 10.1007/BF01364627.  Google Scholar

[3]

K. Burns and V. Matveev, Open problems and questions about geodesics, Ergodic Theory and Dynamical Systems, 1–44. doi: 10.1017/etds.2019.73.  Google Scholar

[4]

V. J. Donnay and C. C. Pugh, Anosov geodesic flows for embedded surfaces, Geometric Methods in Dynamics. II. Astérisque, 18 (2003), 61-69.   Google Scholar

[5]

Í. Dowell and S. Romaña, A rigidity theorem for anosov geodesic flows, preprint, arXiv: 1709.09524. Google Scholar

[6]

P. Eberlein, When is a geodesic flow of anosov type? I, J. Differential Geom., 8 (1973), 437-463.  doi: 10.4310/jdg/1214431801.  Google Scholar

[7]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Inventiones Mathematicae, 69 (1982), 375-392.  doi: 10.1007/BF01389360.  Google Scholar

[8]

L. W. Green, A theorem of E. hopf, Michigan Math. J., 5 (1958), 31-34.  doi: 10.1307/mmj/1028998009.  Google Scholar

[9]

F. F. Guimarães, The integral of the scalar curvature of complete manifolds without conjugate points, J. Differential Geom., 36 (1992), 651-662.  doi: 10.4310/jdg/1214453184.  Google Scholar

[10]

R. Gulliver, On the variety of Manifolds without conjugate points, Transactions of the American Mathematical Society, 210 (1975), 185-201.  doi: 10.1090/S0002-9947-1975-0383294-0.  Google Scholar

[11]

E. Hopf, Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences, 34 (1948), 47-51.  doi: 10.1073/pnas.34.2.47.  Google Scholar

[12]

W. Klingenberg, Riemannian manifolds with geodesic flow of anosov type, Annals of Mathematics, 99 (1974), 1-13.  doi: 10.2307/1971011.  Google Scholar

[13]

G. Knieper, Hyperbolic dynamics and Riemannian geometry, Handbook of Dymanical Systems, North-Holland, Amsterdam, 1A (2002), 453-545.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[14]

R. Mañé, On a theorem of Klingenberg, Dynamical Systems and Bifurcation Theory, Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 160 (1987), 319-345.   Google Scholar

[15] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.   Google Scholar
[16]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180. Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[17]

F. Riquelme, Counterexamples to Ruelle's inequality in the noncompact case, Annales de l'Institut Fourier, 67 (2017), 23-41.  doi: 10.5802/aif.3076.  Google Scholar

[18]

F. Riquelme, Ruelle's inequality in negative curvature, Discrete Contin. Dyn. Syst., 38 (2018), 2809-2825.  doi: 10.3934/dcds.2018119.  Google Scholar

[19]

S. Rosenberg, Shorter notes: Gauss-bonnet theorems for noncompact surfaces, Proceedings of the American Mathematical Society, 86 (1982), 184-185.  doi: 10.2307/2044423.  Google Scholar

[20]

R. O. Ruggiero, On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.  doi: 10.1007/BF02571508.  Google Scholar

[21]

R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom., 18 (1983), 791-809.  doi: 10.4310/jdg/1214438183.  Google Scholar

[1]

Fei Liu, Fang Wang, Weisheng Wu. On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1517-1554. doi: 10.3934/dcds.2020085

[2]

Yong Fang. Rigidity of Hamenstädt metrics of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1271-1278. doi: 10.3934/dcds.2016.36.1271

[3]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[4]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[5]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[6]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[7]

Jorge Rebaza. Uniformly distributed points on the sphere. Communications on Pure & Applied Analysis, 2005, 4 (2) : 389-403. doi: 10.3934/cpaa.2005.4.389

[8]

Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171

[9]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[10]

Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403

[11]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[12]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[13]

Motoko Qiu Kawakita. Certain sextics with many rational points. Advances in Mathematics of Communications, 2017, 11 (2) : 289-292. doi: 10.3934/amc.2017020

[14]

Yeshun Sun, Chung-Chun Yang. Buried points and lakes of Wada Continua. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 379-382. doi: 10.3934/dcds.2003.9.379

[15]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[16]

Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

[17]

Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81

[18]

Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117

[19]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[20]

Sujay Jayakar, Robert S. Strichartz. Average number of lattice points in a disk. Communications on Pure & Applied Analysis, 2016, 15 (1) : 1-8. doi: 10.3934/cpaa.2016.15.1

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (82)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]