September  2020, 40(9): 5189-5215. doi: 10.3934/dcds.2020225

On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations

Karlsruher Institut für Technologie, Fakultät für Mathematik, Institut für Analysis, Englerstrasse 2, 76131 Karlsruhe, Germany

Received  July 2019 Revised  October 2019 Published  June 2020

Fund Project: Financial support by the German Research Foundation (DFG) through the IRTG 2235 and CRC 1173, Project-ID 258734477, is gratefully acknowledged

A family of dispersive equations is considered, which links a higher-dimensional Benjamin-Ono equation and the Zakharov-Kuznetsov equation. For these fractional Zakharov-Kuznetsov equations new well-posedness results are proved using transversality and time localization to small frequency dependent time intervals.

Citation: Robert Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5189-5215. doi: 10.3934/dcds.2020225
References:
[1]

T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-562.   Google Scholar

[2]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.  Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices, (1998), 253–283. doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. ChristJ. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math. (N.S.), 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32.  Google Scholar

[5]

A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.  doi: 10.3934/dcds.2014.34.2061.  Google Scholar

[6]

Z. H. Guo, Local well-posedness and a priori bounds for the modified Benjamin-Ono equation, Adv. Differential Equations, 16 (2011), 1087-1137.   Google Scholar

[7]

Z. H. Guo, Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces, J. Differential Equations, 252 (2012), 2053-2084.  doi: 10.1016/j.jde.2011.10.012.  Google Scholar

[8]

Z. H. Guo and T. Oh, Non-existence of solutions for the periodic cubic NLS below $L^2$, Int. Math. Res. Not. IMRN, (2018), 1656–1729. doi: 10.1093/imrn/rnw271.  Google Scholar

[9]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[10]

M. HadacS. Herr and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space", Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 971-972.  doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[11]

S. HerrA. D. IonescuC. E. Kenig and H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Differential Equations, 35 (2010), 1827-1875.  doi: 10.1080/03605302.2010.487232.  Google Scholar

[12]

J. HickmanF. LinaresO. G. RiañoK. M. Rogers and J. Wright, On a higher dimensional version of the Benjamin-Ono equation, SIAM J. Math. Anal., 51 (2019), 4544-4569.  doi: 10.1137/19M1241970.  Google Scholar

[13]

A. D. IonescuC. E. Kenig and D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980, http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf. doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math. (2), 190 (2019), 249-305.  doi: 10.4007/annals.2019.190.1.4.  Google Scholar

[16]

S. Kinoshita, Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, e-prints, arXiv: 1905.01490. Google Scholar

[17]

H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., 58 (2005), 217-284.  doi: 10.1002/cpa.20067.  Google Scholar

[18]

H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN, 2007 (2007), Art. ID rnm053, 36 pp. doi: 10.1093/imrn/rnm053.  Google Scholar

[19]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\Bbb R})$, Int. Math. Res. Not., (2003), 1449–1464. doi: 10.1155/S1073792803211260.  Google Scholar

[20]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., (2005), 1833–1847. doi: 10.1155/IMRN.2005.1833.  Google Scholar

[21]

F. LinaresM. PantheeT. Robert and N. Tzvetkov, On the periodic Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 39 (2019), 3521-3533.  doi: 10.3934/dcds.2019145.  Google Scholar

[22]

M. Mariş, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2002), 1073-1085.  doi: 10.1016/S0362-546X(01)00880-X.  Google Scholar

[23]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[24]

L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.  doi: 10.1016/j.anihpc.2013.12.003.  Google Scholar

[25]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202.  doi: 10.1016/0375-9601(95)00608-6.  Google Scholar

[26]

F. Ribaud and S. Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289-2304.  doi: 10.1137/110850566.  Google Scholar

[27]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[28]

J.-C. Saut, Benjamin-Ono and intermediate long wave equations: Modeling, IST and PDE, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Inst. Commun., Springer, New York, 83 (2019), 95-160.   Google Scholar

[29]

R. Schippa, On shorttime bilinear Strichartz estimates and applications to the Shrira equation, Nonlinear Anal., 198 (2020), 111910. doi: 10.1016/j.na.2020.111910.  Google Scholar

[30]

R. Schippa, On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below $H^{1/2}(\mathbb{T})$, e-prints, arXiv: 1704.07174. Google Scholar

[31] C. D. Sogge, Fourier Integrals in Classical Analysis, Second edition, Cambridge Tracts in Mathematics, 210. Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316341186.  Google Scholar
[32]

V. Zakharov and E. Kuznetsov, On three dimensional solitons, J. Exp. Theor. Phys., 39 (1974), 285-286.   Google Scholar

show all references

References:
[1]

T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-562.   Google Scholar

[2]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.  Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices, (1998), 253–283. doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. ChristJ. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math. (N.S.), 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32.  Google Scholar

[5]

A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.  doi: 10.3934/dcds.2014.34.2061.  Google Scholar

[6]

Z. H. Guo, Local well-posedness and a priori bounds for the modified Benjamin-Ono equation, Adv. Differential Equations, 16 (2011), 1087-1137.   Google Scholar

[7]

Z. H. Guo, Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces, J. Differential Equations, 252 (2012), 2053-2084.  doi: 10.1016/j.jde.2011.10.012.  Google Scholar

[8]

Z. H. Guo and T. Oh, Non-existence of solutions for the periodic cubic NLS below $L^2$, Int. Math. Res. Not. IMRN, (2018), 1656–1729. doi: 10.1093/imrn/rnw271.  Google Scholar

[9]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[10]

M. HadacS. Herr and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space", Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 971-972.  doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[11]

S. HerrA. D. IonescuC. E. Kenig and H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Differential Equations, 35 (2010), 1827-1875.  doi: 10.1080/03605302.2010.487232.  Google Scholar

[12]

J. HickmanF. LinaresO. G. RiañoK. M. Rogers and J. Wright, On a higher dimensional version of the Benjamin-Ono equation, SIAM J. Math. Anal., 51 (2019), 4544-4569.  doi: 10.1137/19M1241970.  Google Scholar

[13]

A. D. IonescuC. E. Kenig and D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980, http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf. doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math. (2), 190 (2019), 249-305.  doi: 10.4007/annals.2019.190.1.4.  Google Scholar

[16]

S. Kinoshita, Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, e-prints, arXiv: 1905.01490. Google Scholar

[17]

H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., 58 (2005), 217-284.  doi: 10.1002/cpa.20067.  Google Scholar

[18]

H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN, 2007 (2007), Art. ID rnm053, 36 pp. doi: 10.1093/imrn/rnm053.  Google Scholar

[19]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\Bbb R})$, Int. Math. Res. Not., (2003), 1449–1464. doi: 10.1155/S1073792803211260.  Google Scholar

[20]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., (2005), 1833–1847. doi: 10.1155/IMRN.2005.1833.  Google Scholar

[21]

F. LinaresM. PantheeT. Robert and N. Tzvetkov, On the periodic Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 39 (2019), 3521-3533.  doi: 10.3934/dcds.2019145.  Google Scholar

[22]

M. Mariş, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2002), 1073-1085.  doi: 10.1016/S0362-546X(01)00880-X.  Google Scholar

[23]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.  Google Scholar

[24]

L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.  doi: 10.1016/j.anihpc.2013.12.003.  Google Scholar

[25]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202.  doi: 10.1016/0375-9601(95)00608-6.  Google Scholar

[26]

F. Ribaud and S. Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289-2304.  doi: 10.1137/110850566.  Google Scholar

[27]

F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37 (2017), 449-483.  doi: 10.3934/dcds.2017019.  Google Scholar

[28]

J.-C. Saut, Benjamin-Ono and intermediate long wave equations: Modeling, IST and PDE, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Inst. Commun., Springer, New York, 83 (2019), 95-160.   Google Scholar

[29]

R. Schippa, On shorttime bilinear Strichartz estimates and applications to the Shrira equation, Nonlinear Anal., 198 (2020), 111910. doi: 10.1016/j.na.2020.111910.  Google Scholar

[30]

R. Schippa, On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below $H^{1/2}(\mathbb{T})$, e-prints, arXiv: 1704.07174. Google Scholar

[31] C. D. Sogge, Fourier Integrals in Classical Analysis, Second edition, Cambridge Tracts in Mathematics, 210. Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316341186.  Google Scholar
[32]

V. Zakharov and E. Kuznetsov, On three dimensional solitons, J. Exp. Theor. Phys., 39 (1974), 285-286.   Google Scholar

[1]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[2]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[3]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[4]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[5]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[6]

Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145

[7]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[8]

Mo Chen, Lionel Rosier. Exact controllability of the linear Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3889-3916. doi: 10.3934/dcdsb.2020080

[9]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[10]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[11]

A. C. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4285-4325. doi: 10.3934/cpaa.2020194

[12]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[13]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[14]

Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074

[15]

Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547

[16]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[17]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[18]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[19]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[20]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (174)
  • HTML views (84)
  • Cited by (4)

Other articles
by authors

[Back to Top]