September  2020, 40(9): 5247-5287. doi: 10.3934/dcds.2020227

Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices

1. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

2. 

College of Mathematics, Sichuan University, Chengdu, Sichuan 610065, China

* Corresponding author: Lei Yang

Received  September 2019 Revised  February 2020 Published  June 2020

Fund Project: This material is based upon work supported by the National Science Foundation under Grant Nos. 1301715 and 1700394.
The second author is supported in part by ISF grant 2095/15, ERC grant AdG 267259, NSFC grant 11743006, 11801384 and the Fundamental Research Funds for the Central Universities YJ201769

In this paper, we study an analytic curve $ \varphi: I = [a, b]\rightarrow \mathrm{M}(m\times n, \mathbb{R}) $ in the space of $ m $ by $ n $ real matrices, and show that if $ \varphi $ satisfies certain geometric condition, then for almost every point on the curve, the Diophantine approximation given by Dirichlet's Theorem can not be improved. To do this, we embed the curve into a homogeneous space $ G/\Gamma $, and prove that under the action of some expanding diagonal subgroup $ A = \{a(t): t \in \mathbb{R}\} $, the translates of the curve tend to be equidistributed in $ G/\Gamma $, as $ t \rightarrow +\infty $. The proof relies on the linearization technique and representation theory.

Citation: Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227
References:
[1]

M. AkaE. BreuillardL. Rosenzweig and N. de Saxcé, On metric diophantine approximation in matrices and lie groups, C. R. Math. Acad. Sci. Paris, 353 (2015), 185-189.  doi: 10.1016/j.crma.2014.12.007.  Google Scholar

[2]

M. AkaE. BreuillardL. Rosenzweig and N. de Saxcé, Diophantine approximation on matrices and lie groups, Geom. Funct. Anal., 28 (2018), 1-57.  doi: 10.1007/s00039-018-0436-0.  Google Scholar

[3]

R. C. Baker, Dirichlet's theorem on Diophantine approximation, Math. Proc. Cambridge Philos. Soc., 83 (1978), 37-59.  doi: 10.1017/S030500410005427X.  Google Scholar

[4]

Y. Bugeaud, Approximation by algebraic integers and hausdorff dimension, Journal of the London Mathematical Society (2), 65 (2002), 547-559.  doi: 10.1112/S0024610702003137.  Google Scholar

[5]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces, Ergodic Theory and Dynamical Systems, 4 (1984), 25-34.  doi: 10.1017/S0143385700002248.  Google Scholar

[6]

S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.  doi: 10.1007/BF02872005.  Google Scholar

[7]

H. Davenport and W. M. Schmidt, Dirichlet's theorem on diophantine approximation. Ⅱ, Acta Arithmetica, 16 (1969/70), 413-424.  doi: 10.4064/aa-16-4-413-424.  Google Scholar

[8]

W. Fulton and J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics, 129. Readings in Mathematics, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[9]

D. KleinbockG. Margulis and J. B. Wang, Metric diophantine approximation for systems of linear forms via dynamics, International Journal of Number Theory, 6 (2010), 1139-1168.  doi: 10.1142/S1793042110003423.  Google Scholar

[10]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and diophantine approximation on manifolds, Annals of Mathematics (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[11]

D. Kleinbock and B. Weiss, Dirichlet's theorem on diophantine approximation and homogeneous flows, Journal of Modern Dynamics, 2 (2008), 43-62.  doi: 10.3934/jmd.2008.2.43.  Google Scholar

[12]

S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, 15 (1995), 149-159.  doi: 10.1017/S0143385700008282.  Google Scholar

[13]

M. Ratner, On raghunathan's measure conjecture, Annals of Mathematics (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[14]

M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235-280.  doi: 10.1215/S0012-7094-91-06311-8.  Google Scholar

[15]

N. A. Shah, Expanding translates of curves and dirichlet-minkowski theorem on linear forms, Journal of the American Mathematical Society, 23 (2010), 563-589.  doi: 10.1090/S0894-0347-09-00657-2.  Google Scholar

[16]

N. A Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proceedings Mathematical Sciences, 106 (1996), 105-125.  doi: 10.1007/BF02837164.  Google Scholar

[17]

N. A. Shah, Asymptotic evolution of smooth curves under geodesic flow on hyperbolic manifolds, Duke Mathematical Journal, 148 (2009), 281-304.  doi: 10.1215/00127094-2009-027.  Google Scholar

[18]

N. A. Shah, Equidistribution of expanding translates of curves and dirichlets theorem on diophantine approximation, Inventiones Mathematicae, 177 (2009), 509-532.   Google Scholar

[19]

N. A. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Mathematical Journal, 148 (2009), 251-279.  doi: 10.1215/00127094-2009-026.  Google Scholar

[20]

L. Yang, Equidistribution of expanding curves in homogeneous spaces and diophantine approximation for square matrices, Proc. Amer. Math. Soc., 144 (2016), 5291-5308.  doi: 10.1090/proc/13170.  Google Scholar

[21]

L. Yang, Expanding curves in $\mathrm{T}^1(\mathbb{H}^n)$ under geodesic flow and equidistribution in homogeneous spaces, Israel J. Math., 216 (2016), 389-413.  doi: 10.1007/s11856-016-1414-6.  Google Scholar

show all references

References:
[1]

M. AkaE. BreuillardL. Rosenzweig and N. de Saxcé, On metric diophantine approximation in matrices and lie groups, C. R. Math. Acad. Sci. Paris, 353 (2015), 185-189.  doi: 10.1016/j.crma.2014.12.007.  Google Scholar

[2]

M. AkaE. BreuillardL. Rosenzweig and N. de Saxcé, Diophantine approximation on matrices and lie groups, Geom. Funct. Anal., 28 (2018), 1-57.  doi: 10.1007/s00039-018-0436-0.  Google Scholar

[3]

R. C. Baker, Dirichlet's theorem on Diophantine approximation, Math. Proc. Cambridge Philos. Soc., 83 (1978), 37-59.  doi: 10.1017/S030500410005427X.  Google Scholar

[4]

Y. Bugeaud, Approximation by algebraic integers and hausdorff dimension, Journal of the London Mathematical Society (2), 65 (2002), 547-559.  doi: 10.1112/S0024610702003137.  Google Scholar

[5]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces, Ergodic Theory and Dynamical Systems, 4 (1984), 25-34.  doi: 10.1017/S0143385700002248.  Google Scholar

[6]

S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.  doi: 10.1007/BF02872005.  Google Scholar

[7]

H. Davenport and W. M. Schmidt, Dirichlet's theorem on diophantine approximation. Ⅱ, Acta Arithmetica, 16 (1969/70), 413-424.  doi: 10.4064/aa-16-4-413-424.  Google Scholar

[8]

W. Fulton and J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics, 129. Readings in Mathematics, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[9]

D. KleinbockG. Margulis and J. B. Wang, Metric diophantine approximation for systems of linear forms via dynamics, International Journal of Number Theory, 6 (2010), 1139-1168.  doi: 10.1142/S1793042110003423.  Google Scholar

[10]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and diophantine approximation on manifolds, Annals of Mathematics (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[11]

D. Kleinbock and B. Weiss, Dirichlet's theorem on diophantine approximation and homogeneous flows, Journal of Modern Dynamics, 2 (2008), 43-62.  doi: 10.3934/jmd.2008.2.43.  Google Scholar

[12]

S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, 15 (1995), 149-159.  doi: 10.1017/S0143385700008282.  Google Scholar

[13]

M. Ratner, On raghunathan's measure conjecture, Annals of Mathematics (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[14]

M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235-280.  doi: 10.1215/S0012-7094-91-06311-8.  Google Scholar

[15]

N. A. Shah, Expanding translates of curves and dirichlet-minkowski theorem on linear forms, Journal of the American Mathematical Society, 23 (2010), 563-589.  doi: 10.1090/S0894-0347-09-00657-2.  Google Scholar

[16]

N. A Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proceedings Mathematical Sciences, 106 (1996), 105-125.  doi: 10.1007/BF02837164.  Google Scholar

[17]

N. A. Shah, Asymptotic evolution of smooth curves under geodesic flow on hyperbolic manifolds, Duke Mathematical Journal, 148 (2009), 281-304.  doi: 10.1215/00127094-2009-027.  Google Scholar

[18]

N. A. Shah, Equidistribution of expanding translates of curves and dirichlets theorem on diophantine approximation, Inventiones Mathematicae, 177 (2009), 509-532.   Google Scholar

[19]

N. A. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Mathematical Journal, 148 (2009), 251-279.  doi: 10.1215/00127094-2009-026.  Google Scholar

[20]

L. Yang, Equidistribution of expanding curves in homogeneous spaces and diophantine approximation for square matrices, Proc. Amer. Math. Soc., 144 (2016), 5291-5308.  doi: 10.1090/proc/13170.  Google Scholar

[21]

L. Yang, Expanding curves in $\mathrm{T}^1(\mathbb{H}^n)$ under geodesic flow and equidistribution in homogeneous spaces, Israel J. Math., 216 (2016), 389-413.  doi: 10.1007/s11856-016-1414-6.  Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]