September  2020, 40(9): 5289-5323. doi: 10.3934/dcds.2020228

Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA

* Corresponding author: Hongjie Dong

Received  October 2019 Revised  April 2020 Published  June 2020

Fund Project: H. Dong and K. Wang were partially supported by the NSF under agreement DMS-1600593

We study regularity criteria for the $ d $-dimensional incompressible Navier-Stokes equations. We prove if $ u\in L_{\infty}^tL_d^x((0,T)\times{\mathbb{R}}^d_+) $ is a Leray-Hopf weak solution vanishing on the boundary, then $ u $ is regular up to the boundary in $ (0,T)\times {\mathbb{R}}^d_+ $. Furthermore, with a stronger uniform local condition on the pressure $ p $, we prove $ u $ is unique and tends to zero as $ t\rightarrow \infty $ if $ T = \infty $. This generalizes a result by Escauriaza, Seregin, and Šverák [14] to higher dimensions and domains with boundary. We also study the local problem in half unit cylinder $ Q^+ $ and prove that if $ u\in L^t_{\infty}L^x_d(Q^+) $ and $ p\in L_{2-1/d}(Q^+) $, then $ u $ is Hölder continuous in the closure of the set $ Q^+(1/4) $.

Citation: Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228
References:
[1]

D. Albritton and T. Barker, Global weak Besov solutions of the Navier-Stokes equations and applications, e-prints, (2018). Google Scholar

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, 11 (2018), 1415-1456.  doi: 10.2140/apde.2018.11.1415.  Google Scholar

[3]

T. Barker and G. Seregin, A necessary condition of potential blowup for the Navier-Stokes system in half-space, Math. Ann., 369 (2017), 1327-1352.  doi: 10.1007/s00208-016-1488-9.  Google Scholar

[4]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar

[5]

A. Cheskidov and R. Shvydkoy, The regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$, Arch. Ration. Mech. Anal., 195 (2010), 159-169.  doi: 10.1007/s00205-009-0265-2.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.   Google Scholar

[7]

H. J. Dong and D. P. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Comm. Math. Phys., 273 (2007), 785-801.  doi: 10.1007/s00220-007-0259-6.  Google Scholar

[8]

H. J. Dong and D. P. Du, The Navier-Stokes equations in the critical Lebesgue space, Comm. Math. Phys., 292 (2009), 811-827.  doi: 10.1007/s00220-009-0852-y.  Google Scholar

[9]

H. J. Dong and X. M. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.  doi: 10.4310/DPDE.2014.v11.n1.a3.  Google Scholar

[10]

H. J. Dong and X. M. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.  doi: 10.1016/j.jfa.2014.08.001.  Google Scholar

[11]

H. J. Dong and D. Li, Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7 (2009), 67-80.  doi: 10.4310/CMS.2009.v7.n1.a3.  Google Scholar

[12]

H. J. Dong and R. M. Strain, On partial regularity of steady-state solutions to the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61 (2012), 2211-2229.  doi: 10.1512/iumj.2012.61.4765.  Google Scholar

[13]

H. J. Dong and K. R. Wang, Boundary $\varepsilon$-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1290-1309.  doi: 10.1137/18M1234722.  Google Scholar

[14]

L. EscauriazaG. A. Sëregin and V. Sverak, Sëregin-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[15]

L. EscauriazaG. Seregin and V. Šverák, On backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.  doi: 10.1007/s00205-003-0263-8.  Google Scholar

[16]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.  doi: 10.1007/s00220-016-2593-z.  Google Scholar

[17] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.   Google Scholar
[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[19]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[20]

Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1,2 (2003), 549-562.   Google Scholar

[21]

C. Guevara and N. C. Phuc, Local energy bounds and $\epsilon$-regularity criteria for the 3D Navier-Stokes system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 68, 16 pp. doi: 10.1007/s00526-017-1151-7.  Google Scholar

[22]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.  doi: 10.1002/mana.3210040121.  Google Scholar

[23]

C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 33 (1969), 386-405.  doi: 10.1007/BF00247697.  Google Scholar

[24]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[25]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 159-187.  doi: 10.1016/j.anihpc.2010.10.004.  Google Scholar

[26]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[27]

O. A. Ladyženskaja, Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169-185.   Google Scholar

[28]

O. A. Ladyzhenskaya and G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.  doi: 10.1007/s000210050015.  Google Scholar

[29]

J. Leray, Étude de diverses équations intérales non linéaires et de quelques problemes que pose l’hydrodynamique, NUMDAM, (1933), 82 pp.  Google Scholar

[30]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[31]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[32]

P. Maremonti and V. A. Solonnikov, On estimates for the solutions of the nonstationary Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23,124-150,309. doi: 10.1007/BF02355828.  Google Scholar

[33]

K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.  doi: 10.3792/pja/1195521421.  Google Scholar

[34]

A. S. Mikhailov and T. N. Shilkin, $L_3,\infty$-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37,133–152,276. doi: 10.1007/s10958-007-0176-4.  Google Scholar

[35]

N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760.  doi: 10.1007/s00021-015-0229-2.  Google Scholar

[36]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[37]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.  doi: 10.2140/pjm.1976.66.535.  Google Scholar

[38]

V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55 (1977), 97-112.  doi: 10.1007/BF01626512.  Google Scholar

[39]

V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73 (1980), 1-42.  doi: 10.1007/BF01942692.  Google Scholar

[40]

G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31,204–223,317. doi: 10.1023/A:1023330105200.  Google Scholar

[41]

G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.  doi: 10.1007/s00021-002-8533-z.  Google Scholar

[42]

G. Seregin, On smoothness of $L_3,\infty$-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238.  doi: 10.1007/s00208-004-0625-z.  Google Scholar

[43]

G. A. Seregin, A note on local boundary regularity for the Stokes system, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40, 151–159, 221–222. doi: 10.1007/s10958-010-9847-7.  Google Scholar

[44]

G. A. Seregin, T. N. Shilkin and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 158–190,228. doi: 10.1007/s10958-005-0502-7.  Google Scholar

[45]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[46]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., (1963), 69–98.  Google Scholar

[47]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  doi: 10.1002/cpa.3160410404.  Google Scholar

[48]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.  doi: 10.1080/03605309208820892.  Google Scholar

[49]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 753-785.  doi: 10.1007/s00030-007-6001-4.  Google Scholar

[50]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[51]

W. D. Wang and Z. F. Zhang, Blow-up of critical norms for the 3-D Navier-Stokes equations, Sci. China Math., 60 (2017), 637-650.  doi: 10.1007/s11425-016-0344-5.  Google Scholar

[52]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

show all references

References:
[1]

D. Albritton and T. Barker, Global weak Besov solutions of the Navier-Stokes equations and applications, e-prints, (2018). Google Scholar

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, 11 (2018), 1415-1456.  doi: 10.2140/apde.2018.11.1415.  Google Scholar

[3]

T. Barker and G. Seregin, A necessary condition of potential blowup for the Navier-Stokes system in half-space, Math. Ann., 369 (2017), 1327-1352.  doi: 10.1007/s00208-016-1488-9.  Google Scholar

[4]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar

[5]

A. Cheskidov and R. Shvydkoy, The regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$, Arch. Ration. Mech. Anal., 195 (2010), 159-169.  doi: 10.1007/s00205-009-0265-2.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.   Google Scholar

[7]

H. J. Dong and D. P. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Comm. Math. Phys., 273 (2007), 785-801.  doi: 10.1007/s00220-007-0259-6.  Google Scholar

[8]

H. J. Dong and D. P. Du, The Navier-Stokes equations in the critical Lebesgue space, Comm. Math. Phys., 292 (2009), 811-827.  doi: 10.1007/s00220-009-0852-y.  Google Scholar

[9]

H. J. Dong and X. M. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.  doi: 10.4310/DPDE.2014.v11.n1.a3.  Google Scholar

[10]

H. J. Dong and X. M. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.  doi: 10.1016/j.jfa.2014.08.001.  Google Scholar

[11]

H. J. Dong and D. Li, Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7 (2009), 67-80.  doi: 10.4310/CMS.2009.v7.n1.a3.  Google Scholar

[12]

H. J. Dong and R. M. Strain, On partial regularity of steady-state solutions to the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61 (2012), 2211-2229.  doi: 10.1512/iumj.2012.61.4765.  Google Scholar

[13]

H. J. Dong and K. R. Wang, Boundary $\varepsilon$-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1290-1309.  doi: 10.1137/18M1234722.  Google Scholar

[14]

L. EscauriazaG. A. Sëregin and V. Sverak, Sëregin-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[15]

L. EscauriazaG. Seregin and V. Šverák, On backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.  doi: 10.1007/s00205-003-0263-8.  Google Scholar

[16]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.  doi: 10.1007/s00220-016-2593-z.  Google Scholar

[17] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.   Google Scholar
[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[19]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[20]

Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1,2 (2003), 549-562.   Google Scholar

[21]

C. Guevara and N. C. Phuc, Local energy bounds and $\epsilon$-regularity criteria for the 3D Navier-Stokes system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 68, 16 pp. doi: 10.1007/s00526-017-1151-7.  Google Scholar

[22]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.  doi: 10.1002/mana.3210040121.  Google Scholar

[23]

C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 33 (1969), 386-405.  doi: 10.1007/BF00247697.  Google Scholar

[24]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[25]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 159-187.  doi: 10.1016/j.anihpc.2010.10.004.  Google Scholar

[26]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[27]

O. A. Ladyženskaja, Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169-185.   Google Scholar

[28]

O. A. Ladyzhenskaya and G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.  doi: 10.1007/s000210050015.  Google Scholar

[29]

J. Leray, Étude de diverses équations intérales non linéaires et de quelques problemes que pose l’hydrodynamique, NUMDAM, (1933), 82 pp.  Google Scholar

[30]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[31]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[32]

P. Maremonti and V. A. Solonnikov, On estimates for the solutions of the nonstationary Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23,124-150,309. doi: 10.1007/BF02355828.  Google Scholar

[33]

K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.  doi: 10.3792/pja/1195521421.  Google Scholar

[34]

A. S. Mikhailov and T. N. Shilkin, $L_3,\infty$-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37,133–152,276. doi: 10.1007/s10958-007-0176-4.  Google Scholar

[35]

N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760.  doi: 10.1007/s00021-015-0229-2.  Google Scholar

[36]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[37]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.  doi: 10.2140/pjm.1976.66.535.  Google Scholar

[38]

V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55 (1977), 97-112.  doi: 10.1007/BF01626512.  Google Scholar

[39]

V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73 (1980), 1-42.  doi: 10.1007/BF01942692.  Google Scholar

[40]

G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31,204–223,317. doi: 10.1023/A:1023330105200.  Google Scholar

[41]

G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.  doi: 10.1007/s00021-002-8533-z.  Google Scholar

[42]

G. Seregin, On smoothness of $L_3,\infty$-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238.  doi: 10.1007/s00208-004-0625-z.  Google Scholar

[43]

G. A. Seregin, A note on local boundary regularity for the Stokes system, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40, 151–159, 221–222. doi: 10.1007/s10958-010-9847-7.  Google Scholar

[44]

G. A. Seregin, T. N. Shilkin and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 158–190,228. doi: 10.1007/s10958-005-0502-7.  Google Scholar

[45]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[46]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., (1963), 69–98.  Google Scholar

[47]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  doi: 10.1002/cpa.3160410404.  Google Scholar

[48]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.  doi: 10.1080/03605309208820892.  Google Scholar

[49]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 753-785.  doi: 10.1007/s00030-007-6001-4.  Google Scholar

[50]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[51]

W. D. Wang and Z. F. Zhang, Blow-up of critical norms for the 3-D Navier-Stokes equations, Sci. China Math., 60 (2017), 637-650.  doi: 10.1007/s11425-016-0344-5.  Google Scholar

[52]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

[1]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[2]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[3]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[4]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[5]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[6]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[7]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020083

[8]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[9]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[10]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[11]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[12]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[13]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[14]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[15]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[16]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[17]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[18]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[19]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[20]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (70)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]