We study regularity criteria for the $ d $-dimensional incompressible Navier-Stokes equations. We prove if $ u\in L_{\infty}^tL_d^x((0,T)\times{\mathbb{R}}^d_+) $ is a Leray-Hopf weak solution vanishing on the boundary, then $ u $ is regular up to the boundary in $ (0,T)\times {\mathbb{R}}^d_+ $. Furthermore, with a stronger uniform local condition on the pressure $ p $, we prove $ u $ is unique and tends to zero as $ t\rightarrow \infty $ if $ T = \infty $. This generalizes a result by Escauriaza, Seregin, and Šverák [
Citation: |
[1] |
D. Albritton and T. Barker, Global weak Besov solutions of the Navier-Stokes equations and applications, e-prints, (2018).
![]() |
[2] |
D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, 11 (2018), 1415-1456.
doi: 10.2140/apde.2018.11.1415.![]() ![]() ![]() |
[3] |
T. Barker and G. Seregin, A necessary condition of potential blowup for the Navier-Stokes system in half-space, Math. Ann., 369 (2017), 1327-1352.
doi: 10.1007/s00208-016-1488-9.![]() ![]() ![]() |
[4] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604.![]() ![]() ![]() |
[5] |
A. Cheskidov and R. Shvydkoy, The regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$, Arch. Ration. Mech. Anal., 195 (2010), 159-169.
doi: 10.1007/s00205-009-0265-2.![]() ![]() ![]() |
[6] |
F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.
![]() ![]() |
[7] |
H. J. Dong and D. P. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Comm. Math. Phys., 273 (2007), 785-801.
doi: 10.1007/s00220-007-0259-6.![]() ![]() ![]() |
[8] |
H. J. Dong and D. P. Du, The Navier-Stokes equations in the critical Lebesgue space, Comm. Math. Phys., 292 (2009), 811-827.
doi: 10.1007/s00220-009-0852-y.![]() ![]() ![]() |
[9] |
H. J. Dong and X. M. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.
doi: 10.4310/DPDE.2014.v11.n1.a3.![]() ![]() ![]() |
[10] |
H. J. Dong and X. M. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.
doi: 10.1016/j.jfa.2014.08.001.![]() ![]() ![]() |
[11] |
H. J. Dong and D. Li, Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7 (2009), 67-80.
doi: 10.4310/CMS.2009.v7.n1.a3.![]() ![]() ![]() |
[12] |
H. J. Dong and R. M. Strain, On partial regularity of steady-state solutions to the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61 (2012), 2211-2229.
doi: 10.1512/iumj.2012.61.4765.![]() ![]() ![]() |
[13] |
H. J. Dong and K. R. Wang, Boundary $\varepsilon$-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1290-1309.
doi: 10.1137/18M1234722.![]() ![]() ![]() |
[14] |
L. Escauriaza, G. A. Sëregin and V. Sverak, Sëregin-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.
doi: 10.1070/RM2003v058n02ABEH000609.![]() ![]() ![]() |
[15] |
L. Escauriaza, G. Seregin and V. Šverák, On backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.
doi: 10.1007/s00205-003-0263-8.![]() ![]() ![]() |
[16] |
I. Gallagher, G. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.
doi: 10.1007/s00220-016-2593-z.![]() ![]() ![]() |
[17] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
![]() ![]() |
[18] |
Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3.![]() ![]() ![]() |
[19] |
Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875.![]() ![]() ![]() |
[20] |
Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1,2 (2003), 549-562.
![]() ![]() |
[21] |
C. Guevara and N. C. Phuc, Local energy bounds and $\epsilon$-regularity criteria for the 3D Navier-Stokes system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 68, 16 pp.
doi: 10.1007/s00526-017-1151-7.![]() ![]() ![]() |
[22] |
E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121.![]() ![]() ![]() |
[23] |
C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 33 (1969), 386-405.
doi: 10.1007/BF00247697.![]() ![]() ![]() |
[24] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182.![]() ![]() ![]() |
[25] |
C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 159-187.
doi: 10.1016/j.anihpc.2010.10.004.![]() ![]() ![]() |
[26] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937.![]() ![]() ![]() |
[27] |
O. A. Ladyženskaja, Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169-185.
![]() ![]() |
[28] |
O. A. Ladyzhenskaya and G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.
doi: 10.1007/s000210050015.![]() ![]() ![]() |
[29] |
J. Leray, Étude de diverses équations intérales non linéaires et de quelques problemes que pose l’hydrodynamique, NUMDAM, (1933), 82 pp.
![]() ![]() |
[30] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302.![]() ![]() ![]() |
[31] |
F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.![]() ![]() ![]() |
[32] |
P. Maremonti and V. A. Solonnikov, On estimates for the solutions of the nonstationary Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23,124-150,309.
doi: 10.1007/BF02355828.![]() ![]() ![]() |
[33] |
K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.
doi: 10.3792/pja/1195521421.![]() ![]() ![]() |
[34] |
A. S. Mikhailov and T. N. Shilkin, $L_3,\infty$-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37,133–152,276.
doi: 10.1007/s10958-007-0176-4.![]() ![]() ![]() |
[35] |
N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760.
doi: 10.1007/s00021-015-0229-2.![]() ![]() ![]() |
[36] |
G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48 (1959), 173-182.
doi: 10.1007/BF02410664.![]() ![]() ![]() |
[37] |
V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.
doi: 10.2140/pjm.1976.66.535.![]() ![]() ![]() |
[38] |
V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55 (1977), 97-112.
doi: 10.1007/BF01626512.![]() ![]() ![]() |
[39] |
V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73 (1980), 1-42.
doi: 10.1007/BF01942692.![]() ![]() ![]() |
[40] |
G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31,204–223,317.
doi: 10.1023/A:1023330105200.![]() ![]() ![]() |
[41] |
G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.
doi: 10.1007/s00021-002-8533-z.![]() ![]() ![]() |
[42] |
G. Seregin, On smoothness of $L_3,\infty$-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238.
doi: 10.1007/s00208-004-0625-z.![]() ![]() ![]() |
[43] |
G. A. Seregin, A note on local boundary regularity for the Stokes system, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40, 151–159, 221–222.
doi: 10.1007/s10958-010-9847-7.![]() ![]() ![]() |
[44] |
G. A. Seregin, T. N. Shilkin and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 158–190,228.
doi: 10.1007/s10958-005-0502-7.![]() ![]() ![]() |
[45] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.
doi: 10.1007/BF00253344.![]() ![]() ![]() |
[46] |
J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., (1963), 69–98.
![]() ![]() |
[47] |
M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.
doi: 10.1002/cpa.3160410404.![]() ![]() ![]() |
[48] |
M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.
doi: 10.1080/03605309208820892.![]() ![]() ![]() |
[49] |
A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 753-785.
doi: 10.1007/s00030-007-6001-4.![]() ![]() ![]() |
[50] |
W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985.
doi: 10.1007/978-3-663-13911-9.![]() ![]() ![]() |
[51] |
W. D. Wang and Z. F. Zhang, Blow-up of critical norms for the 3-D Navier-Stokes equations, Sci. China Math., 60 (2017), 637-650.
doi: 10.1007/s11425-016-0344-5.![]() ![]() ![]() |
[52] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.
doi: 10.1007/BF00280539.![]() ![]() ![]() |