September  2020, 40(9): 5325-5345. doi: 10.3934/dcds.2020229

Reducibility of quasi-periodically forced circle flows

1. 

Department of Mathematics, University of Mississippi, Hume Hall 305, University, MS 38677, USA

2. 

Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal

* Corresponding author: Saša Kocić

Received  October 2019 Published  June 2020

We develop a renormalization group approach to the problem of reducibility of quasi-periodically forced circle flows. We apply the method to prove a reducibility theorem for such flows.

Citation: Saša Kocić, João Lopes Dias. Reducibility of quasi-periodically forced circle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5325-5345. doi: 10.3934/dcds.2020229
References:
[1]

V. I. Arnol'd, Small denominators. Ⅰ: On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Serie, 25 (1961), 21-86. 

[2]

V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. 

[3]

A. D. Brjuno, Analytic form of differential equations. Ⅰ, Trudy Moskov. Mat. Obšč., 25 (1971), 119-262.

[4]

A. D. Brjuno, Analytic form of differential equations. Ⅱ, Trudy Moskov. Mat. Obšč., 26 (1972), 199-239.

[5]

L. Corsi and G. Gentile, Oscillator synchronisation under arbitrary quasi-periodic forcing, Commun. Math. Phys., 316 (2012), 489-529.  doi: 10.1007/s00220-012-1548-2.

[6]

G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J. Stat. Phys., 125 (2006), 321-361.  doi: 10.1007/s10955-006-9127-6.

[7]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory and Dynam. Systems, 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.

[8]

M.-R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations, Inst. Hautes études Sci. Publ. Math., 49 (1979), 5-233. 

[9]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.  doi: 10.1007/BF01208484.

[10]

K. KhaninJ. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Commun. Math. Phys., 270 (2007), 197-231.  doi: 10.1007/s00220-006-0125-y.

[11]

H. Koch and S. Kocić, Renormalization of vector fields and Diophantine invariant tori, Ergodic Theory Dynam. Systems, 28 (2008), 1559-1585.  doi: 10.1017/S0143385707000892.

[12]

H. Koch and S. Kocić, A renormalization group approach to quasiperiodic motion with Brjuno frequencies, Ergodic Theory Dynam. Systems, 30 (2010), 1131-1146.  doi: 10.1017/S014338570900042X.

[13]

H. Koch and S. Kocić, A renormalization approach to lower-dimensional tori with Brjuno frequency vectors, J. Differential Equations, 249 (2010), 1986-2004.  doi: 10.1016/j.jde.2010.05.004.

[14]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.  doi: 10.1088/0951-7715/18/6/006.

[15]

S. Kocić, Reducibility of skew-product systems with multidimensional Brjuno base flows, Discrete Contin. Dyn. Syst. A, 29 (2011), 261-283.  doi: 10.3934/dcds.2011.29.261.

[16]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. 

[17]

J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.  doi: 10.1016/j.jde.2006.07.021.

[18]

J. Lopes Dias, Local conjugacy classes for analytic torus flows, J. Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.

[19]

J. Moser, Convergent series expansions for quasi-periodic motions, Mathematische Annalen, 169 (1967), 136-176.  doi: 10.1007/BF01399536.

[20]

H. Rüssmann, On the one-dimensional Schrödinger equation with a quasiperiodic potential, Nonlinear Dynamics, Ann. New York Acad. Sci., New York Acad. Sci., New York, 357 (1980), 90-107. 

[21]

J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231 (1995).

[22]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical Systems and Small Divisors, Lecture Notes in Mathematics, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.

show all references

References:
[1]

V. I. Arnol'd, Small denominators. Ⅰ: On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Serie, 25 (1961), 21-86. 

[2]

V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. 

[3]

A. D. Brjuno, Analytic form of differential equations. Ⅰ, Trudy Moskov. Mat. Obšč., 25 (1971), 119-262.

[4]

A. D. Brjuno, Analytic form of differential equations. Ⅱ, Trudy Moskov. Mat. Obšč., 26 (1972), 199-239.

[5]

L. Corsi and G. Gentile, Oscillator synchronisation under arbitrary quasi-periodic forcing, Commun. Math. Phys., 316 (2012), 489-529.  doi: 10.1007/s00220-012-1548-2.

[6]

G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J. Stat. Phys., 125 (2006), 321-361.  doi: 10.1007/s10955-006-9127-6.

[7]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory and Dynam. Systems, 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.

[8]

M.-R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations, Inst. Hautes études Sci. Publ. Math., 49 (1979), 5-233. 

[9]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.  doi: 10.1007/BF01208484.

[10]

K. KhaninJ. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Commun. Math. Phys., 270 (2007), 197-231.  doi: 10.1007/s00220-006-0125-y.

[11]

H. Koch and S. Kocić, Renormalization of vector fields and Diophantine invariant tori, Ergodic Theory Dynam. Systems, 28 (2008), 1559-1585.  doi: 10.1017/S0143385707000892.

[12]

H. Koch and S. Kocić, A renormalization group approach to quasiperiodic motion with Brjuno frequencies, Ergodic Theory Dynam. Systems, 30 (2010), 1131-1146.  doi: 10.1017/S014338570900042X.

[13]

H. Koch and S. Kocić, A renormalization approach to lower-dimensional tori with Brjuno frequency vectors, J. Differential Equations, 249 (2010), 1986-2004.  doi: 10.1016/j.jde.2010.05.004.

[14]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.  doi: 10.1088/0951-7715/18/6/006.

[15]

S. Kocić, Reducibility of skew-product systems with multidimensional Brjuno base flows, Discrete Contin. Dyn. Syst. A, 29 (2011), 261-283.  doi: 10.3934/dcds.2011.29.261.

[16]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. 

[17]

J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.  doi: 10.1016/j.jde.2006.07.021.

[18]

J. Lopes Dias, Local conjugacy classes for analytic torus flows, J. Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.

[19]

J. Moser, Convergent series expansions for quasi-periodic motions, Mathematische Annalen, 169 (1967), 136-176.  doi: 10.1007/BF01399536.

[20]

H. Rüssmann, On the one-dimensional Schrödinger equation with a quasiperiodic potential, Nonlinear Dynamics, Ann. New York Acad. Sci., New York Acad. Sci., New York, 357 (1980), 90-107. 

[21]

J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231 (1995).

[22]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical Systems and Small Divisors, Lecture Notes in Mathematics, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.

[1]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[2]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589

[3]

Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[6]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[9]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[10]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[11]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[12]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[13]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[14]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[15]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[16]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[17]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[18]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[19]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[20]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (298)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]