September  2020, 40(9): 5325-5345. doi: 10.3934/dcds.2020229

Reducibility of quasi-periodically forced circle flows

1. 

Department of Mathematics, University of Mississippi, Hume Hall 305, University, MS 38677, USA

2. 

Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal

* Corresponding author: Saša Kocić

Received  October 2019 Published  June 2020

We develop a renormalization group approach to the problem of reducibility of quasi-periodically forced circle flows. We apply the method to prove a reducibility theorem for such flows.

Citation: Saša Kocić, João Lopes Dias. Reducibility of quasi-periodically forced circle flows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5325-5345. doi: 10.3934/dcds.2020229
References:
[1]

V. I. Arnol'd, Small denominators. Ⅰ: On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Serie, 25 (1961), 21-86.   Google Scholar

[2]

V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40.   Google Scholar

[3]

A. D. Brjuno, Analytic form of differential equations. Ⅰ, Trudy Moskov. Mat. Obšč., 25 (1971), 119-262.  Google Scholar

[4]

A. D. Brjuno, Analytic form of differential equations. Ⅱ, Trudy Moskov. Mat. Obšč., 26 (1972), 199-239.  Google Scholar

[5]

L. Corsi and G. Gentile, Oscillator synchronisation under arbitrary quasi-periodic forcing, Commun. Math. Phys., 316 (2012), 489-529.  doi: 10.1007/s00220-012-1548-2.  Google Scholar

[6]

G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J. Stat. Phys., 125 (2006), 321-361.  doi: 10.1007/s10955-006-9127-6.  Google Scholar

[7]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory and Dynam. Systems, 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.  Google Scholar

[8]

M.-R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations, Inst. Hautes études Sci. Publ. Math., 49 (1979), 5-233.   Google Scholar

[9]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.  doi: 10.1007/BF01208484.  Google Scholar

[10]

K. KhaninJ. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Commun. Math. Phys., 270 (2007), 197-231.  doi: 10.1007/s00220-006-0125-y.  Google Scholar

[11]

H. Koch and S. Kocić, Renormalization of vector fields and Diophantine invariant tori, Ergodic Theory Dynam. Systems, 28 (2008), 1559-1585.  doi: 10.1017/S0143385707000892.  Google Scholar

[12]

H. Koch and S. Kocić, A renormalization group approach to quasiperiodic motion with Brjuno frequencies, Ergodic Theory Dynam. Systems, 30 (2010), 1131-1146.  doi: 10.1017/S014338570900042X.  Google Scholar

[13]

H. Koch and S. Kocić, A renormalization approach to lower-dimensional tori with Brjuno frequency vectors, J. Differential Equations, 249 (2010), 1986-2004.  doi: 10.1016/j.jde.2010.05.004.  Google Scholar

[14]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.  doi: 10.1088/0951-7715/18/6/006.  Google Scholar

[15]

S. Kocić, Reducibility of skew-product systems with multidimensional Brjuno base flows, Discrete Contin. Dyn. Syst. A, 29 (2011), 261-283.  doi: 10.3934/dcds.2011.29.261.  Google Scholar

[16]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530.   Google Scholar

[17]

J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.  doi: 10.1016/j.jde.2006.07.021.  Google Scholar

[18]

J. Lopes Dias, Local conjugacy classes for analytic torus flows, J. Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.  Google Scholar

[19]

J. Moser, Convergent series expansions for quasi-periodic motions, Mathematische Annalen, 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[20]

H. Rüssmann, On the one-dimensional Schrödinger equation with a quasiperiodic potential, Nonlinear Dynamics, Ann. New York Acad. Sci., New York Acad. Sci., New York, 357 (1980), 90-107.   Google Scholar

[21]

J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231 (1995). Google Scholar

[22]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical Systems and Small Divisors, Lecture Notes in Mathematics, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Small denominators. Ⅰ: On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Serie, 25 (1961), 21-86.   Google Scholar

[2]

V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40.   Google Scholar

[3]

A. D. Brjuno, Analytic form of differential equations. Ⅰ, Trudy Moskov. Mat. Obšč., 25 (1971), 119-262.  Google Scholar

[4]

A. D. Brjuno, Analytic form of differential equations. Ⅱ, Trudy Moskov. Mat. Obšč., 26 (1972), 199-239.  Google Scholar

[5]

L. Corsi and G. Gentile, Oscillator synchronisation under arbitrary quasi-periodic forcing, Commun. Math. Phys., 316 (2012), 489-529.  doi: 10.1007/s00220-012-1548-2.  Google Scholar

[6]

G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J. Stat. Phys., 125 (2006), 321-361.  doi: 10.1007/s10955-006-9127-6.  Google Scholar

[7]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory and Dynam. Systems, 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.  Google Scholar

[8]

M.-R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations, Inst. Hautes études Sci. Publ. Math., 49 (1979), 5-233.   Google Scholar

[9]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.  doi: 10.1007/BF01208484.  Google Scholar

[10]

K. KhaninJ. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Commun. Math. Phys., 270 (2007), 197-231.  doi: 10.1007/s00220-006-0125-y.  Google Scholar

[11]

H. Koch and S. Kocić, Renormalization of vector fields and Diophantine invariant tori, Ergodic Theory Dynam. Systems, 28 (2008), 1559-1585.  doi: 10.1017/S0143385707000892.  Google Scholar

[12]

H. Koch and S. Kocić, A renormalization group approach to quasiperiodic motion with Brjuno frequencies, Ergodic Theory Dynam. Systems, 30 (2010), 1131-1146.  doi: 10.1017/S014338570900042X.  Google Scholar

[13]

H. Koch and S. Kocić, A renormalization approach to lower-dimensional tori with Brjuno frequency vectors, J. Differential Equations, 249 (2010), 1986-2004.  doi: 10.1016/j.jde.2010.05.004.  Google Scholar

[14]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.  doi: 10.1088/0951-7715/18/6/006.  Google Scholar

[15]

S. Kocić, Reducibility of skew-product systems with multidimensional Brjuno base flows, Discrete Contin. Dyn. Syst. A, 29 (2011), 261-283.  doi: 10.3934/dcds.2011.29.261.  Google Scholar

[16]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530.   Google Scholar

[17]

J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.  doi: 10.1016/j.jde.2006.07.021.  Google Scholar

[18]

J. Lopes Dias, Local conjugacy classes for analytic torus flows, J. Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.  Google Scholar

[19]

J. Moser, Convergent series expansions for quasi-periodic motions, Mathematische Annalen, 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[20]

H. Rüssmann, On the one-dimensional Schrödinger equation with a quasiperiodic potential, Nonlinear Dynamics, Ann. New York Acad. Sci., New York Acad. Sci., New York, 357 (1980), 90-107.   Google Scholar

[21]

J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231 (1995). Google Scholar

[22]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical Systems and Small Divisors, Lecture Notes in Mathematics, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.  Google Scholar

[1]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[2]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589

[3]

Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[6]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[9]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[10]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[11]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[12]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[13]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[14]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[15]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[16]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[17]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[18]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[19]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

[20]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (80)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]