\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Polynomial 3-mixing for smooth time-changes of horocycle flows

  • * Corresponding author: Adam Kanigowski

    * Corresponding author: Adam Kanigowski 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $ (h_t)_{t\in {\mathbb{R}}} $ be the horocycle flow acting on $ (M,\mu) = (\Gamma \backslash \operatorname{SL}(2,{\mathbb{R}}), \mu) $, where $ \Gamma $ is a co-compact lattice in $ \operatorname{SL}(2,{\mathbb{R}}) $ and $ \mu $ is the homogeneous probability measure locally given by the Haar measure on $ \operatorname{SL}(2,{\mathbb{R}}) $. Let $ \tau\in W^6(M) $ be a strictly positive function and let $ \mu^{\tau} $ be the measure equivalent to $ \mu $ with density $ \tau $. We consider the time changed flow $ (h_t^\tau)_{t\in {\mathbb{R}}} $ and we show that there exists $ \gamma = \gamma(M,\tau)>0 $ and a constant $ C>0 $ such that for any $ f_0, f_1, f_2\in W^6(M) $ and for all $ 0 = t_0<t_1<t_2 $, we have

    $ \left|\int_M \prod\limits_{i = 0}^{2} f_i\circ h^\tau_{t_i} {\rm{d}} \mu^\tau -\prod\limits_{i = 0}^{2}\int_M f_i {\rm{d}} \mu^\tau \right|\leq C \left(\prod\limits_{i = 0}^{2} \|f_i\|_6\right) \left(\min\limits_{0\leq i<j\leq 2} |t_i-t_j|\right)^{-\gamma}. $

    With the same techniques, we establish polynomial mixing of all orders under the additional assumption of $ \tau $ being fully supported on the discrete series.

    Mathematics Subject Classification: 37A10, 37A25, 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Avila, G. Forni, D. Ravotti and C. Ulcigrai, Mixing for smooth time-changes of general nilflows, preprint, arXiv: 1905.11628.
    [2] A. AvilaG. Forni and C. Ulcigrai, Mixing for time-changes of Heisenberg nilflows, J. Differential Geom., 89 (2011), 369-410.  doi: 10.4310/jdg/1335207373.
    [3] M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative multiple mixing, preprint, arXiv: 1701.00945.
    [4] A. Bufetov and G. Forni, Limit theorem for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903. doi: 10.24033/asens.2229.
    [5] D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.  doi: 10.1007/s10955-016-1689-3.
    [6] B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus, Bull. Soc. Math. France, 129 (2001), 487-503.  doi: 10.24033/bsmf.2405.
    [7] B. Fayad, G. Forni and A. Kanigowski, Lebesgue spectrum for area preserving flows of the torus, submitted.
    [8] L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.
    [9] L. Flaminio and G. Forni, Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows, Electron. Res. Announc. Math. Sci., 26 (2019), 16-23.  doi: 10.3934/era.2019.26.002.
    [10] G. Forni and A. Kanigowski, Time-changes of Heisenberg nilflows, preprint, arXiv: 1711.05543.
    [11] G. Forni and A. Kanigowski, Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows, J. Éc. Polytech. Math., 7 (2020), 63-91. doi: 10.5802/jep.111.
    [12] G. Forni and C. Ulcigrai, Time-changes of horocycle flows, J. Mod. Dyn., 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.
    [13] H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, Lecture Notes in Math., 318, Springer, Berlin, 1973, 95-115.
    [14] B. M. Gurevič, The entropy of horocycle flows, Dokl. Akad. Nauk SSSR, 136 (1961), 768-770. 
    [15] G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J., 2 (1936), 530-542.  doi: 10.1215/S0012-7094-36-00246-6.
    [16] B. Host, Mixing of all orders and pairwise independent joinings of system with singular spectrum, Israel J. Math., 76 (1991), 289-298.  doi: 10.1007/BF02773866.
    [17] A. Kanigowski, M. Lemańczyk and C. Ulcigrai, On disjointness properties of some parabolic flows, Invent. Math., (2020). doi: 10.1007/s00222-019-00940-y.
    [18] A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006,649-743. doi: 10.1016/S1874-575X(06)80036-6.
    [19] B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math., 105 (1977), 81-105.  doi: 10.2307/1971026.
    [20] B. Marcus, The horocycle flow is mixing of all degrees, Invent. Math., 46 (1978), 201-209.  doi: 10.1007/BF01390274.
    [21] J. Moreira, The horocycle flow is mixing of all orders, 2015. Available from: https://joelmoreira.wordpress.com/2015/03/08/the-horocycle-flow-is-mixing-of-all-orders/.
    [22] O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, Uspekhi Matem. Nauk (N.S.), 8 (1953), 125-126. 
    [23] M. Ratner, Rigidity of horocycle flows, Ann. of Math., 115 (1982), 597-614.  doi: 10.2307/2007014.
    [24] M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.  doi: 10.2307/2007030.
    [25] M. Ratner, Rigidity of time changes for horocycle flows, Acta Math., 156 (1986), 1-32.  doi: 10.1007/BF02399199.
    [26] M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.  doi: 10.1017/S0143385700004004.
    [27] M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.  doi: 10.1007/BF01388912.
    [28] D. Ravotti, Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows, Ergodic Theory Dynam. Systems, 39 (2019), 3407-3436.  doi: 10.1017/etds.2018.19.
    [29] D. Ravotti, Quantitative mixing for locally Hamiltonian flows with saddle loops on compact surfaces, Annales Henri Poincaré, 18 (2017), 3815-3861.  doi: 10.1007/s00023-017-0619-5.
    [30] R. Tiedra de Aldecoa, Spectral analysis of time changes of horocycle flow, J. Mod. Dyn., 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.
  • 加载中
SHARE

Article Metrics

HTML views(2157) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return