September  2020, 40(9): 5373-5381. doi: 10.3934/dcds.2020231

Liouville theorems on the upper half space

1. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Department of Mathematics, The University of Oklahoma, Norman, OK 73019, USA

Received  October 2019 Revised  March 2020 Published  June 2020

In this paper we shall establish some Liouville theorems for solutions bounded from below to certain linear elliptic equations on the upper half space. In particular, we show that for $ a \in (0, 1) $ constants are the only $ C^1 $ up to the boundary positive solutions to $ div(x_n^a \nabla u) = 0 $ on the upper half space.

Citation: Lei Wang, Meijun Zhu. Liouville theorems on the upper half space. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5373-5381. doi: 10.3934/dcds.2020231
References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

H. P. Boas and R. P. Boas, Short proofs of three theorems on harmonic functions, Proc. Amer. Math. Soc., 102 (1988), 906-908.  doi: 10.1090/S0002-9939-1988-0934865-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

T. Carleman, Zur Theorie de Minimalflächen, Math. Z., 9 (1921), 154-160.  doi: 10.1007/BF01378342.  Google Scholar

[5]

S. Chen, A new family of sharp conformally invariant integral inequalities, Int. Math. Res. Not. IMRN, 2014 (2012), 1205-1220.  doi: 10.1093/imrn/rns248.  Google Scholar

[6]

J. DouQ. Guo and M. Zhu, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space, Adv. Math., 312 (2017), 1-45.  doi: 10.1016/j.aim.2017.03.007.  Google Scholar

[7]

J. Dou, L. Sun, L. Wang and M. Zhu, Divergent operator with degeneracy and related sharp inequalities, preprint, arXiv: 1910.13924. Google Scholar

[8]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2013), 651-687.  doi: 10.1093/imrn/rnt213.  Google Scholar

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[10]

M. Gluck, Subcritical approach to conformally invariant extension operators on the upper half space, J. Funct. Anal., 278 (2020), 46pp. doi: 10.1016/j.jfa.2018.08.012.  Google Scholar

[11]

F. HangX. Wang and X. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., 61 (2008), 54-95.  doi: 10.1002/cpa.20193.  Google Scholar

[12]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

show all references

References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

H. P. Boas and R. P. Boas, Short proofs of three theorems on harmonic functions, Proc. Amer. Math. Soc., 102 (1988), 906-908.  doi: 10.1090/S0002-9939-1988-0934865-6.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

T. Carleman, Zur Theorie de Minimalflächen, Math. Z., 9 (1921), 154-160.  doi: 10.1007/BF01378342.  Google Scholar

[5]

S. Chen, A new family of sharp conformally invariant integral inequalities, Int. Math. Res. Not. IMRN, 2014 (2012), 1205-1220.  doi: 10.1093/imrn/rns248.  Google Scholar

[6]

J. DouQ. Guo and M. Zhu, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space, Adv. Math., 312 (2017), 1-45.  doi: 10.1016/j.aim.2017.03.007.  Google Scholar

[7]

J. Dou, L. Sun, L. Wang and M. Zhu, Divergent operator with degeneracy and related sharp inequalities, preprint, arXiv: 1910.13924. Google Scholar

[8]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2013), 651-687.  doi: 10.1093/imrn/rnt213.  Google Scholar

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[10]

M. Gluck, Subcritical approach to conformally invariant extension operators on the upper half space, J. Funct. Anal., 278 (2020), 46pp. doi: 10.1016/j.jfa.2018.08.012.  Google Scholar

[11]

F. HangX. Wang and X. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., 61 (2008), 54-95.  doi: 10.1002/cpa.20193.  Google Scholar

[12]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

[1]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[2]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[3]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[4]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[5]

Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052

[6]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[7]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[8]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[9]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[10]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[11]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[12]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[13]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[14]

Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111

[15]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[16]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[17]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[18]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[19]

Hilde De Ridder, Hennie De Schepper, Frank Sommen. The Cauchy-Kovalevskaya extension theorem in discrete Clifford analysis. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1097-1109. doi: 10.3934/cpaa.2011.10.1097

[20]

Carla Baroncini, Julián Fernández Bonder. An extension of a Theorem of V. Šverák to variable exponent spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1987-2007. doi: 10.3934/cpaa.2015.14.1987

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]