September  2020, 40(9): 5383-5414. doi: 10.3934/dcds.2020232

Super fast vanishing solutions of the fast diffusion equation

Department of Mathematics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan

Received  November 2019 Revised  April 2020 Published  June 2020

We will extend a recent result of B. Choi, P. Daskalopoulos and J. King [5]. For any $ n\ge 3 $, $ 0<m<\frac{n-2}{n+2} $ and $ \gamma>0 $, we will construct subsolutions and supersolutions of the fast diffusion equation $ u_t = \frac{n-1}{m}\Delta u^m $ in $ \mathbb{R}^n\times (t_0, T) $, $ t_0<T $, which decay at the rate $ (T-t)^{\frac{1+\gamma}{1-m}} $ as $ t\nearrow T $. As a consequence we obtain the existence of unique solution of the Cauchy problem $ u_t = \frac{n-1}{m}\Delta u^m $ in $ \mathbb{R}^n\times (t_0, T) $, $ u(x, t_0) = u_0(x) $ in $ \mathbb{R}^n $, which decay at the rate $ (T-t)^{\frac{1+\gamma}{1-m}} $ as $ t\nearrow T $ when $ u_0 $ satisfies appropriate decay condition.

Citation: Shu-Yu Hsu. Super fast vanishing solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5383-5414. doi: 10.3934/dcds.2020232
References:
[1]

D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Math., 1224, Springer, Berlin, 1986, 1–46. doi: 10.1007/BFb0072687.  Google Scholar

[2]

S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom., 69 (2005), 217-278.  doi: 10.4310/jdg/1121449107.  Google Scholar

[3]

S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007), 541-576.  doi: 10.1007/s00222-007-0074-x.  Google Scholar

[4]

B. Choi and P. Daskalopoulos, Yamabe flow: Steady solutions and type Ⅱ singularities, Nonlinear Anal., 173 (2018), 1-18.  doi: 10.1016/j.na.2018.03.008.  Google Scholar

[5]

B. Choi, P. Daskalopoulos and J. King, Type Ⅱ singularities on complete non-compact Yamabe flow, preprint, arXiv: 1809.05281v1. Google Scholar

[6]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of generalized porous medium equations, Rev. Mat. Iberoamericana, 2 (1986), 267-305.  doi: 10.4171/RMI/34.  Google Scholar

[7]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, Comm. Anal. Geom., 27 (2013). doi: 10.4310/CAG.2019.v27.n8.a4.  Google Scholar

[8]

P. DaskalopoulosM. del PinoJ. King and N. Sesum, Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Anal., 137 (2016), 338-356.  doi: 10.1016/j.na.2015.12.005.  Google Scholar

[9]

P. DaskalopoulosM. del PinoJ. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, Math. Res. Lett., 24 (2017), 1667-1691.  doi: 10.4310/MRL.2017.v24.n6.a5.  Google Scholar

[10]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions. Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033.  Google Scholar

[11]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.  doi: 10.1515/CRELLE.2008.066.  Google Scholar

[12]

V. A. Galaktionov and L. A. Peletier, Asymptotic behaviour near finite-time extinction for the fast diffusion equation, Arch. Rational Mech. Anal., 139 (1997), 83-98.  doi: 10.1007/s002050050048.  Google Scholar

[13]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ for $0<m<1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.  doi: 10.1090/S0002-9947-1985-0797051-0.  Google Scholar

[14]

S.-Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455.  doi: 10.1016/j.na.2012.01.009.  Google Scholar

[15]

S.-Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion, Manuscripta Math., 140 (2013), 441-460.  doi: 10.1007/s00229-012-0576-8.  Google Scholar

[16]

S. Y. Hsu, Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014), 307-321.  doi: 10.1007/s00526-012-0583-3.  Google Scholar

[17]

S.-Y. Hsu, Exact decay rate of a nonlinear elliptic equation related to the Yamabe flow, Proc. Amer. Math. Soc., 142 (2014), 4239-4249.  doi: 10.1090/S0002-9939-2014-12152-6.  Google Scholar

[18]

S.-Y. Hsu, Global behaviour of solutions of the fast diffusion equation, Manuscripta Math., 158 (2019), 103-117.  doi: 10.1007/s00229-018-1008-1.  Google Scholar

[19]

K. M. Hui and S. Kim, Vanishing time behavior of the solutions of the fast diffusion equation, preprint, arXiv: 1811.04410. Google Scholar

[20]

L. A. Peletier, The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Mathematics, 1224, Springer, Berlin, Heidelberg, 1986. doi: 10.1007/BFb0072687.  Google Scholar

[21]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(n-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.  doi: 10.1512/iumj.2001.50.1876.  Google Scholar

[22]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures. Appl. (9), 71 (1992), 503-526.   Google Scholar

[23]

J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar

show all references

References:
[1]

D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Math., 1224, Springer, Berlin, 1986, 1–46. doi: 10.1007/BFb0072687.  Google Scholar

[2]

S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom., 69 (2005), 217-278.  doi: 10.4310/jdg/1121449107.  Google Scholar

[3]

S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007), 541-576.  doi: 10.1007/s00222-007-0074-x.  Google Scholar

[4]

B. Choi and P. Daskalopoulos, Yamabe flow: Steady solutions and type Ⅱ singularities, Nonlinear Anal., 173 (2018), 1-18.  doi: 10.1016/j.na.2018.03.008.  Google Scholar

[5]

B. Choi, P. Daskalopoulos and J. King, Type Ⅱ singularities on complete non-compact Yamabe flow, preprint, arXiv: 1809.05281v1. Google Scholar

[6]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of generalized porous medium equations, Rev. Mat. Iberoamericana, 2 (1986), 267-305.  doi: 10.4171/RMI/34.  Google Scholar

[7]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, Comm. Anal. Geom., 27 (2013). doi: 10.4310/CAG.2019.v27.n8.a4.  Google Scholar

[8]

P. DaskalopoulosM. del PinoJ. King and N. Sesum, Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Anal., 137 (2016), 338-356.  doi: 10.1016/j.na.2015.12.005.  Google Scholar

[9]

P. DaskalopoulosM. del PinoJ. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, Math. Res. Lett., 24 (2017), 1667-1691.  doi: 10.4310/MRL.2017.v24.n6.a5.  Google Scholar

[10]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions. Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033.  Google Scholar

[11]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.  doi: 10.1515/CRELLE.2008.066.  Google Scholar

[12]

V. A. Galaktionov and L. A. Peletier, Asymptotic behaviour near finite-time extinction for the fast diffusion equation, Arch. Rational Mech. Anal., 139 (1997), 83-98.  doi: 10.1007/s002050050048.  Google Scholar

[13]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ for $0<m<1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.  doi: 10.1090/S0002-9947-1985-0797051-0.  Google Scholar

[14]

S.-Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455.  doi: 10.1016/j.na.2012.01.009.  Google Scholar

[15]

S.-Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion, Manuscripta Math., 140 (2013), 441-460.  doi: 10.1007/s00229-012-0576-8.  Google Scholar

[16]

S. Y. Hsu, Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014), 307-321.  doi: 10.1007/s00526-012-0583-3.  Google Scholar

[17]

S.-Y. Hsu, Exact decay rate of a nonlinear elliptic equation related to the Yamabe flow, Proc. Amer. Math. Soc., 142 (2014), 4239-4249.  doi: 10.1090/S0002-9939-2014-12152-6.  Google Scholar

[18]

S.-Y. Hsu, Global behaviour of solutions of the fast diffusion equation, Manuscripta Math., 158 (2019), 103-117.  doi: 10.1007/s00229-018-1008-1.  Google Scholar

[19]

K. M. Hui and S. Kim, Vanishing time behavior of the solutions of the fast diffusion equation, preprint, arXiv: 1811.04410. Google Scholar

[20]

L. A. Peletier, The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Mathematics, 1224, Springer, Berlin, Heidelberg, 1986. doi: 10.1007/BFb0072687.  Google Scholar

[21]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(n-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.  doi: 10.1512/iumj.2001.50.1876.  Google Scholar

[22]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures. Appl. (9), 71 (1992), 503-526.   Google Scholar

[23]

J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar

[1]

H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248

[2]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[3]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[4]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[5]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[6]

Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201

[7]

Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[10]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[11]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[12]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[13]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020405

[14]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[15]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[16]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[17]

Alain Haraux. On the fast solution of evolution equations with a rapidly decaying source term. Mathematical Control & Related Fields, 2011, 1 (1) : 1-20. doi: 10.3934/mcrf.2011.1.1

[18]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[19]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[20]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (75)
  • Cited by (0)

Other articles
by authors

[Back to Top]