-
Previous Article
Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure
- DCDS Home
- This Issue
-
Next Article
Super fast vanishing solutions of the fast diffusion equation
Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
This paper is concerned with the time periodic problem to a coupled chemotaxis-fluid model with porous medium diffusion $ \Delta n^m $. The global existence of solutios for the initial and boundary value problem of this model have been studied by many authors, and in particular, the global solvability is established for $ m>\frac65 $ in dimension 3. Here, taking advantage of a double-level approximation scheme, we establish the existence of uniformly bounded time periodic solution for any $ m\ge \frac 65 $ and any large periodic source $ g(x, t) $. In particular, the energy estimates techniques we used also applicable to the proof of global existence of the initial-boundary value problem, and one can supply the existence of global solutions for $ m = \frac65 $ by this method.
References:
[1] |
A. Blanchet, J. A. Carrillo and P. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7. |
[2] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), 39pp.
doi: 10.1007/s00526-016-1027-2. |
[3] |
T. Cieślak and C. Stinner,
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.
doi: 10.1016/j.jde.2012.01.045. |
[4] |
T. Cieślak and C. Stinner,
Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.
doi: 10.1007/s10440-013-9832-5. |
[5] |
T. Cieślak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[6] |
E. Espejo and T. Suzuki,
Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.
doi: 10.1016/j.nonrwa.2014.07.001. |
[7] |
C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp.
doi: 10.1007/s00033-017-0882-9. |
[8] |
C. Jin,
Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.
doi: 10.1002/mana.201600180. |
[9] |
C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, (2019).
doi: 10.1017/prm.2019.62. |
[10] |
P. Laurençot and N. Mizoguchi,
Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220.
doi: 10.1016/j.anihpc.2015.11.002. |
[11] |
Y. Li and J. Lankeit,
Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595.
doi: 10.1088/0951-7715/29/5/1564. |
[12] |
J.-G. Liu and A. Lorz,
A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[13] |
J. Liu and Y. Wang,
Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999.
doi: 10.1016/j.jde.2016.03.030. |
[14] |
N. Mizoguchi and P. Souplet,
Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[15] |
Y. Peng and Z. Xiang,
Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differential Equations, 267 (2019), 1277-1321.
doi: 10.1016/j.jde.2019.02.007. |
[16] |
Y. Tao and M. Winkler,
A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943. |
[17] |
Y. Tao and M. Winkler,
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y. |
[18] |
Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), 23pp.
doi: 10.1007/s00033-016-0732-1. |
[19] |
Y. Wang,
Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.
doi: 10.1016/j.jde.2015.09.051. |
[20] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[21] |
M. Winkler,
A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.
doi: 10.1016/j.jfa.2018.12.009. |
[22] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[23] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[24] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[25] |
J. Zheng,
Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 627-643.
doi: 10.3934/dcds.2017026. |
show all references
References:
[1] |
A. Blanchet, J. A. Carrillo and P. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7. |
[2] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), 39pp.
doi: 10.1007/s00526-016-1027-2. |
[3] |
T. Cieślak and C. Stinner,
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.
doi: 10.1016/j.jde.2012.01.045. |
[4] |
T. Cieślak and C. Stinner,
Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.
doi: 10.1007/s10440-013-9832-5. |
[5] |
T. Cieślak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[6] |
E. Espejo and T. Suzuki,
Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.
doi: 10.1016/j.nonrwa.2014.07.001. |
[7] |
C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp.
doi: 10.1007/s00033-017-0882-9. |
[8] |
C. Jin,
Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.
doi: 10.1002/mana.201600180. |
[9] |
C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, (2019).
doi: 10.1017/prm.2019.62. |
[10] |
P. Laurençot and N. Mizoguchi,
Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220.
doi: 10.1016/j.anihpc.2015.11.002. |
[11] |
Y. Li and J. Lankeit,
Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595.
doi: 10.1088/0951-7715/29/5/1564. |
[12] |
J.-G. Liu and A. Lorz,
A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[13] |
J. Liu and Y. Wang,
Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999.
doi: 10.1016/j.jde.2016.03.030. |
[14] |
N. Mizoguchi and P. Souplet,
Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[15] |
Y. Peng and Z. Xiang,
Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differential Equations, 267 (2019), 1277-1321.
doi: 10.1016/j.jde.2019.02.007. |
[16] |
Y. Tao and M. Winkler,
A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943. |
[17] |
Y. Tao and M. Winkler,
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y. |
[18] |
Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), 23pp.
doi: 10.1007/s00033-016-0732-1. |
[19] |
Y. Wang,
Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.
doi: 10.1016/j.jde.2015.09.051. |
[20] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[21] |
M. Winkler,
A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.
doi: 10.1016/j.jfa.2018.12.009. |
[22] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[23] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[24] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[25] |
J. Zheng,
Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 627-643.
doi: 10.3934/dcds.2017026. |
[1] |
Zhonghua Qiao, Xuguang Yang. A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28 (3) : 1207-1225. doi: 10.3934/era.2020066 |
[2] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[3] |
Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109 |
[4] |
Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150 |
[5] |
Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170 |
[6] |
M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208 |
[7] |
Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271 |
[8] |
Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29 (6) : 4269-4296. doi: 10.3934/era.2021085 |
[9] |
Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 |
[10] |
Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091 |
[11] |
Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 |
[12] |
Jishan Fan, Kun Zhao. Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3949-3967. doi: 10.3934/dcdsb.2018119 |
[13] |
Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136 |
[14] |
Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021 |
[15] |
Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4567-4585. doi: 10.3934/dcdsb.2020303 |
[16] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[17] |
Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 |
[18] |
Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237 |
[19] |
Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631 |
[20] |
Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]