• Previous Article
    Linearization of a nonautonomous unbounded system with nonuniform contraction: A spectral approach
  • DCDS Home
  • This Issue
  • Next Article
    Nonexistence of global solutions for the semilinear Moore – Gibson – Thompson equation in the conservative case
September  2020, 40(9): 5541-5570. doi: 10.3934/dcds.2020237

Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system

School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210046, China

Received  December 2019 Revised  March 2020 Published  June 2020

In this paper, we consider the following equivariant defocusing Chern-Simons-Schrödinger system,
$\begin{eqnarray}i\partial_{t}\phi+\Delta\phi = \frac{2m}{r^2}A_{\theta}\phi+A_{0}\phi+\frac{1}{r^2}A_{\theta}^2\phi-\lambda|\phi|^{p-2}\phi,\\ \partial_rA_{0} = \frac{1}{r}(m+A_{\theta})|\phi|^2,\\ \partial_tA_{\theta} = rIm(\bar{\phi}\partial_{r}\phi),\\ \partial_rA_{\theta} = -\frac{1}{2}|\phi|^2r,\\ A_r = 0.\end{eqnarray}$
where
$ \phi(t, x_1, x_2): \mathbb{R}^{1+2}\rightarrow \mathbb{R} $
is a complex scalar field,
$ A_\mu(t, x_1, x_2): \mathbb{R}^{1+2}\rightarrow \mathbb{R} $
is the gauge field for
$ \mu = 0, 1, 2 $
,
$ A_r = \frac{x_1}{|x|}A_1+\frac{x_2}{|x|}A_2 $
,
$ A_{\theta} = -x_2A_1+x_1A_2 $
,
$ \lambda<0 $
and
$ p>4 $
.
When
$ p>4 $
, the system is in the mass supercritical and energy subcrtical range. By using the conservation law of the system and the concentration compactness method introduced in [17], we show that the solution of the system exists globally and scatters.
Citation: Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[2]

L. BergéA. De Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.  Google Scholar

[3]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[4]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[5]

X. ChengC. Miao and L. Zhao, Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case, J. Differential Equations, 261 (2016), 2881-2934.  doi: 10.1016/j.jde.2016.04.031.  Google Scholar

[6]

G. Dunne, Self-Dual Chern-Simons Theories, Lecture Notes in Physics Monographs, 36, Springer, Berlin, Heidelberg, 1995. doi: 10.1007/978-3-540-44777-1.  Google Scholar

[7]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[8]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[9]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pur. Appl. (9), 64 (1985), 363-401.   Google Scholar

[10]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.  Google Scholar

[11]

H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 8pp. doi: 10.1063/1.4726192.  Google Scholar

[12]

H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 7pp. doi: 10.1155/2013/590653.  Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D (3), 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[15]

R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.  Google Scholar

[16]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 20pp. doi: 10.1142/S0219199715500741.  Google Scholar

[17]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

G. Li and X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}^2$, Ann. Acad. Sci. Fenn. Math., 42 (2017), 405-428.  doi: 10.5186/aasfm.2017.4223.  Google Scholar

[19]

Z. M. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differential Equations, 264 (2018), 2553-2597.  doi: 10.1016/j.jde.2017.10.026.  Google Scholar

[20]

B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[21]

B. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 2014 (2013), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[22]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998 (1998), 399-425.  doi: 10.1155/S1073792898000270.  Google Scholar

[23]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[24]

S.-J. Oh and F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN, 2015 (2015), 13122-13147.  doi: 10.1093/imrn/rnv093.  Google Scholar

[25]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS), 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.  Google Scholar

[26]

K. Sahbi, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[27]

J. Yuan, Multiple normalized solutions of Chern-Simons-Schrödinger system, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1801-1816.  doi: 10.1007/s00030-015-0344-z.  Google Scholar

[28]

J. Yuan, Global existence and scattering of radial Chern-Simons-Schrödinger system, submitted. Google Scholar

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[2]

L. BergéA. De Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.  Google Scholar

[3]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[4]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[5]

X. ChengC. Miao and L. Zhao, Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case, J. Differential Equations, 261 (2016), 2881-2934.  doi: 10.1016/j.jde.2016.04.031.  Google Scholar

[6]

G. Dunne, Self-Dual Chern-Simons Theories, Lecture Notes in Physics Monographs, 36, Springer, Berlin, Heidelberg, 1995. doi: 10.1007/978-3-540-44777-1.  Google Scholar

[7]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[8]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[9]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pur. Appl. (9), 64 (1985), 363-401.   Google Scholar

[10]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.  Google Scholar

[11]

H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 8pp. doi: 10.1063/1.4726192.  Google Scholar

[12]

H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 7pp. doi: 10.1155/2013/590653.  Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D (3), 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[15]

R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.  Google Scholar

[16]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 20pp. doi: 10.1142/S0219199715500741.  Google Scholar

[17]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[18]

G. Li and X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}^2$, Ann. Acad. Sci. Fenn. Math., 42 (2017), 405-428.  doi: 10.5186/aasfm.2017.4223.  Google Scholar

[19]

Z. M. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differential Equations, 264 (2018), 2553-2597.  doi: 10.1016/j.jde.2017.10.026.  Google Scholar

[20]

B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[21]

B. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 2014 (2013), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[22]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998 (1998), 399-425.  doi: 10.1155/S1073792898000270.  Google Scholar

[23]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[24]

S.-J. Oh and F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN, 2015 (2015), 13122-13147.  doi: 10.1093/imrn/rnv093.  Google Scholar

[25]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS), 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.  Google Scholar

[26]

K. Sahbi, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.  doi: 10.1006/jdeq.2000.3951.  Google Scholar

[27]

J. Yuan, Multiple normalized solutions of Chern-Simons-Schrödinger system, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1801-1816.  doi: 10.1007/s00030-015-0344-z.  Google Scholar

[28]

J. Yuan, Global existence and scattering of radial Chern-Simons-Schrödinger system, submitted. Google Scholar

[1]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

[2]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[3]

Teresa D'Aprile. Some existence and concentration results for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2002, 1 (4) : 457-474. doi: 10.3934/cpaa.2002.1.457

[4]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[5]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[6]

Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099

[7]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[8]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[9]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[10]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[11]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[12]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[13]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[14]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[15]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[16]

Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209

[17]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[18]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[19]

Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064

[20]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (81)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]