September  2020, 40(9): 5591-5616. doi: 10.3934/dcds.2020239

Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $

Department of Mathematical Science, Tsinghua University, Beijing, China

* Corresponding author: yguo@mail.tsinghua.edu.cn

Received  February 2020 Published  June 2020

Fund Project: The second author is supported by NSFC grant 11771235.

In this paper, we consider the following critical quasilinear equation with Hardy potential:
$ \begin{equation} \!\!\!\!\!\left\{ \begin{array}{ll} \!\!\!\!\!-\!\!\sum\limits_{i,j = 1}^N\!\!\!D_j(a_{ij}(u)D_iu)\!+\!\frac{1}{2}\!\!\!\sum\limits_{i,j = 1}^N\!\!\!\!a_{ij}'(u)D_iuD_ju\!+\!a(x)u\! = \!\nu |u|^{q-2}u\!+\!\frac{\mu u}{|x|^2}\!+\!|u|^{2^*-2}u,\hbox{in } \mathbb{R}^N,\\ u(x)\to0\,\,\hbox{as } |x|\,\,\to\infty, \end{array}\right. \;\;\;\;\;(1)\end{equation} $
where
$ a_{ij}(u)\!\in \!C^1\!(\mathbb{R},\mathbb{R}) $
,
$ \nu\!>\!0 $
,
$ 0\!\leq\!\mu\!<\!\alpha\bar{\mu} $
, and
$ \max\!\left\{\!\frac{\alpha\bar{\mu}\gamma}{\alpha\bar{\mu}-\mu}\!+\!2,2^*\!\!-\!\frac{2}{N-2}\sqrt{\!\bar{\mu}\!-\!\frac{\mu}{\alpha}}\right\} \!\!<q<2^* $
,
$ \alpha, \gamma>0 $
,
$ \bar{\mu} = \frac{(N-2)^2}{4} $
,
$ 2^\ast = \frac{2N}{N-2} $
is the Sobolev critical exponent. And
$ a(x) $
is a finite, positive potential function satisfying suitable decay assumptions. By using truncation method combining with the regularization approximation approach and compactness arguments, we prove the existence of infinitely many solutions for this equation.
Citation: Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239
References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

D. CaoS. Peng and S. Yan, Infinitely many solutions for $p-$Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[3]

D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010), 471-501.  doi: 10.1007/s00526-009-0295-5.  Google Scholar

[4]

A. CapozziD. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 463-470.  doi: 10.1016/S0294-1449(16)30395-X.  Google Scholar

[5]

G. CeramiG. Devillanova and S. Solimini, Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differential Equations, 23 (2005), 139-168.  doi: 10.1007/s00526-004-0293-6.  Google Scholar

[6]

G. CeramiS. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[7]

J.-M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar

[8]

A. de BouardN. Hayashi and J.-C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.  Google Scholar

[9]

Y. Deng, Y. Guo and J. Liu, Existence of solutions for quasilinear elliptic equations with Hardy potential, J. Math. Phys., 57 (2016), 15pp. doi: 10.1063/1.4944455.  Google Scholar

[10]

Y. Deng, Y. Guo and S. Yan, Multiple solutions for critical quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 58 (2019), 26pp. doi: 10.1007/s00526-018-1459-y.  Google Scholar

[11]

G. Divillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7 (2002), 1257-1280.   Google Scholar

[12]

F. Gao and Y. Guo, Multiple solutions for a critical quasilinear equation with Hardy potential, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 1977-2003.  doi: 10.3934/dcdss.2019128.  Google Scholar

[13]

F. Gao and Y. Guo, Solutions for critical quasilinear elliptic equations in $\mathbb{R}^N$, J. Math. Phys., 60 (2019), 26pp. doi: 10.1063/1.5083169.  Google Scholar

[14]

Y. GuoJ. Liu and Z.-Q. Wang, On a Brezis-Nirenburg type quasilinear problem, J. Fixed Point Theory Appl., 19 (2017), 719-753.  doi: 10.1007/s11784-016-0371-3.  Google Scholar

[15]

T. Kilpeläinen and J. Malý, The Winer test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.  doi: 10.1007/BF02392793.  Google Scholar

[16]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[17]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[18]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations., 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[19]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

J.-Q. Liu and Z.-Q. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, J. Differential Equations, 257 (2014), 2874-2899.  doi: 10.1016/j.jde.2014.06.002.  Google Scholar

[22]

X. Liu and J. Zhao, $p$-Laplacian equations in $\mathbb{R}^N $ with finite potential via truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[23]

M. PoppenbergK. Schmitt and Z.-Q. Wang, On the existence of solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[24]

M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[25]

C. Tintarev, Concentration analysis and cocompactness, in Concentration Analysis and Applications to PDE, Trends Math., Birkhäuser/Springer, Basel, 2013,117–141. doi: 10.1007/978-3-0348-0373-1_7.  Google Scholar

[26] K. Tintarev and K.-H. Fineseler, Concentration Compactness. Functional Analytic Grounds and Applications, Imperial College Press, London, 2007.  doi: 10.1142/p456.  Google Scholar
[27]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[28]

C.-L. Xiang, Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential, J. Differential. Equations, 259 (2015), 3929-3954.  doi: 10.1016/j.jde.2015.05.007.  Google Scholar

[29]

J. ZhaoX. Liu and J. Liu, $p$-Laplacian equations in $\mathbb{R}^N$ with finite potential via truncation method, the critical case, J. Math. Anal. Appl., 455 (2017), 58-88.  doi: 10.1016/j.jmaa.2017.03.085.  Google Scholar

show all references

References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

D. CaoS. Peng and S. Yan, Infinitely many solutions for $p-$Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[3]

D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010), 471-501.  doi: 10.1007/s00526-009-0295-5.  Google Scholar

[4]

A. CapozziD. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 463-470.  doi: 10.1016/S0294-1449(16)30395-X.  Google Scholar

[5]

G. CeramiG. Devillanova and S. Solimini, Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differential Equations, 23 (2005), 139-168.  doi: 10.1007/s00526-004-0293-6.  Google Scholar

[6]

G. CeramiS. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[7]

J.-M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar

[8]

A. de BouardN. Hayashi and J.-C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.  Google Scholar

[9]

Y. Deng, Y. Guo and J. Liu, Existence of solutions for quasilinear elliptic equations with Hardy potential, J. Math. Phys., 57 (2016), 15pp. doi: 10.1063/1.4944455.  Google Scholar

[10]

Y. Deng, Y. Guo and S. Yan, Multiple solutions for critical quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 58 (2019), 26pp. doi: 10.1007/s00526-018-1459-y.  Google Scholar

[11]

G. Divillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7 (2002), 1257-1280.   Google Scholar

[12]

F. Gao and Y. Guo, Multiple solutions for a critical quasilinear equation with Hardy potential, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 1977-2003.  doi: 10.3934/dcdss.2019128.  Google Scholar

[13]

F. Gao and Y. Guo, Solutions for critical quasilinear elliptic equations in $\mathbb{R}^N$, J. Math. Phys., 60 (2019), 26pp. doi: 10.1063/1.5083169.  Google Scholar

[14]

Y. GuoJ. Liu and Z.-Q. Wang, On a Brezis-Nirenburg type quasilinear problem, J. Fixed Point Theory Appl., 19 (2017), 719-753.  doi: 10.1007/s11784-016-0371-3.  Google Scholar

[15]

T. Kilpeläinen and J. Malý, The Winer test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.  doi: 10.1007/BF02392793.  Google Scholar

[16]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[17]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[18]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations., 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[19]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

J.-Q. Liu and Z.-Q. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, J. Differential Equations, 257 (2014), 2874-2899.  doi: 10.1016/j.jde.2014.06.002.  Google Scholar

[22]

X. Liu and J. Zhao, $p$-Laplacian equations in $\mathbb{R}^N $ with finite potential via truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[23]

M. PoppenbergK. Schmitt and Z.-Q. Wang, On the existence of solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[24]

M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[25]

C. Tintarev, Concentration analysis and cocompactness, in Concentration Analysis and Applications to PDE, Trends Math., Birkhäuser/Springer, Basel, 2013,117–141. doi: 10.1007/978-3-0348-0373-1_7.  Google Scholar

[26] K. Tintarev and K.-H. Fineseler, Concentration Compactness. Functional Analytic Grounds and Applications, Imperial College Press, London, 2007.  doi: 10.1142/p456.  Google Scholar
[27]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[28]

C.-L. Xiang, Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential, J. Differential. Equations, 259 (2015), 3929-3954.  doi: 10.1016/j.jde.2015.05.007.  Google Scholar

[29]

J. ZhaoX. Liu and J. Liu, $p$-Laplacian equations in $\mathbb{R}^N$ with finite potential via truncation method, the critical case, J. Math. Anal. Appl., 455 (2017), 58-88.  doi: 10.1016/j.jmaa.2017.03.085.  Google Scholar

[1]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[2]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[3]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[6]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[7]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[8]

Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081

[9]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020361

[10]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[11]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[12]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[13]

Shoichi Hasegawa. A critical exponent of Joseph-Lundgren type for an Hénon equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1189-1198. doi: 10.3934/cpaa.2017058

[14]

Jiguang Bao, Nguyen Lam, Guozhen Lu. Polyharmonic equations with critical exponential growth in the whole space $ \mathbb{R}^{n}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 577-600. doi: 10.3934/dcds.2016.36.577

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[17]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[18]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[19]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[20]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (87)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]