October  2020, 40(10): 5617-5638. doi: 10.3934/dcds.2020240

Existence and uniqueness of very weak solution of the MHD type system

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received  October 2018 Revised  April 2020 Published  June 2020

This paper studies the very weak solution to the steady MHD type system in a bounded domain. We prove the existence of very weak solutions to the MHD type system for arbitrary large external forces $ ({\bf f},{\bf{g}}) $ in $ L^r({\Omega})\times [X_{\theta',q'}({\Omega})]' $ and suitable boundary data $ ({\mathcal B}^0,{\mathcal U}^0) $ in $ W^{-1/p,p}({\partial}{\Omega})\times W^{-1/q,q}({\partial}{\Omega}) $, under certain assumptions on $ p,q,r,\theta $. The uniqueness of very weak solution for small data $ ({\bf f},{\bf{g}},{\mathcal B}^0,{\mathcal U}^0) $ is also studied.

Citation: Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240
References:
[1]

G. V. Alekseev, Solvability of control problems for stationary equations of the magnetohydrodynamics of a viscous fluid., Siberian Math. J., 45 (2004), 197-213.  doi: 10.1023/B:SIMJ.0000021277.82617.3b.  Google Scholar

[2]

K. A. Ames and J. C. Song, Decay bounds for magnetohydrodynamic geophysical flow, Nonlinear Anal., 65 (2006), 1318-1333.  doi: 10.1016/j.na.2005.10.013.  Google Scholar

[3]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslov. Math. J., 44 (1994), 109-140.   Google Scholar

[4]

C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in $\Bbb R^3$, J. Math. Fluid Mech., 9 (2007), 181-210.  doi: 10.1007/s00021-005-0195-1.  Google Scholar

[5]

C. Amrouche$ \rm\check{S} $. Ne$ \rm\check{c} $asová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, J. Differ. Equ., 244 (2008), 887-915.  doi: 10.1016/j.jde.2007.10.007.  Google Scholar

[6]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 223-228.  doi: 10.1016/j.crma.2009.12.020.  Google Scholar

[7]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Oseen and Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 335-339.  doi: 10.1016/j.crma.2009.12.021.  Google Scholar

[8]

C. Amrouche and M. Á. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal., 199 (2011), 597-651.  doi: 10.1007/s00205-010-0340-8.  Google Scholar

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2003. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[10]

M. Bulí$ \rm\check{c} $ekJ. Burczak and S. Schwarzacher, A unified theory for some non Newtonian fluids under singular forcing, SIAM J. Math. Anal., 48 (2016), 4241-4267.  doi: 10.1137/16M1073881.  Google Scholar

[11]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Diff. Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[12]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.   Google Scholar

[13]

E. V. Chizhonkov, A system of equations of magnetohydrodynamic type, Dokl. Akad. Nauk SSSR, 278 (1984), 1074-1077.   Google Scholar

[14]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3 Spectral Theory and Applications, Springer-Verlag Berlin Heidelberg, 1990.  Google Scholar

[15]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.  Google Scholar

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Second Edition, Springer, New York, 2011. Google Scholar

[17]

G. P. GaldiC. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74.  doi: 10.1007/s00208-004-0573-7.  Google Scholar

[18]

C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z., 165 (1979), 193-197.  doi: 10.1007/BF01182469.  Google Scholar

[19]

D. Glibarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

F. Guillénâ€"GonzálezM. A. Rodríguez-Bellido and M. A. Rojas-Medar, Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 807-826.  doi: 10.1016/j.anihpc.2003.11.002.  Google Scholar

[21]

M. D. GunzburgerA. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56 (1991), 523-563.  doi: 10.1090/S0025-5718-1991-1066834-0.  Google Scholar

[22]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[23]

R. Hide, On planetary atmospheres and interiors, In Mathematical Problems in the Gcophysical Sciences Ⅰ. Amer. Math. Soc., Providence, RI, (1971), 229-353. Google Scholar

[24]

H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal., 193 (2009), 117-152.  doi: 10.1007/s00205-008-0168-7.  Google Scholar

[25]

I. KondrashukE. A. Notte-Cuello and M. A. Rojas-Medar, Magnetohydrodynamics's type equations over Clifford algebras, J. Nonlinear Math. Phys., 17 (2010), 337-347.  doi: 10.1142/S1402925110000933.  Google Scholar

[26]

H. Li and C. Lin, Spatial decay bounds for time dependent magnetohydrodynamic geophysical flow, Nonlinear Anal. Real World Appl., 11 (2010), 665-682.  doi: 10.1016/j.nonrwa.2009.01.013.  Google Scholar

[27]

Y. Li and C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\Bbb R^3$, J. Dynam. Differential Equations, 18 (2006), 393-426.  doi: 10.1007/s10884-006-9012-7.  Google Scholar

[28]

E. Maru$ \rm\check{s} $ić-Paloka, Solvability of the Navier-Stokes system with $L^2$ boundary data, Appl. Math. Optim., 41 (2000), 365-375.  doi: 10.1007/s002459911018.  Google Scholar

[29]

M. A. Rojas-Medar and J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85-97.  doi: 10.22199/S07160917.1994.0002.00002.  Google Scholar

[30]

M. A. Rojas-Medar and J. L. Boldrini, Global strong solutions of equations of magnetohydrodynamic type, J. Austral. Math. Soc., Ser. B, 38 (1997), 291-306.  doi: 10.1017/S0334270000000680.  Google Scholar

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[32]

E. J. Villamizar-RoaH. Lamos-Díaz and G. Arenas-Díaz, Very weak solutions for the magnetohydrodynamic type equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 957-972.  doi: 10.3934/dcdsb.2008.10.957.  Google Scholar

[33]

E. J. Villamizar-RoaM. A. Rodríguez-BellidoM. A and Ro jas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.  Google Scholar

[34]

Y. Zeng, Steady states of Hall-MHD system, J. Math. Anal. Appl., 451 (2017), 757-793.  doi: 10.1016/j.jmaa.2017.02.023.  Google Scholar

[35]

C. S. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759-781.  doi: 10.1002/mma.394.  Google Scholar

show all references

References:
[1]

G. V. Alekseev, Solvability of control problems for stationary equations of the magnetohydrodynamics of a viscous fluid., Siberian Math. J., 45 (2004), 197-213.  doi: 10.1023/B:SIMJ.0000021277.82617.3b.  Google Scholar

[2]

K. A. Ames and J. C. Song, Decay bounds for magnetohydrodynamic geophysical flow, Nonlinear Anal., 65 (2006), 1318-1333.  doi: 10.1016/j.na.2005.10.013.  Google Scholar

[3]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslov. Math. J., 44 (1994), 109-140.   Google Scholar

[4]

C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in $\Bbb R^3$, J. Math. Fluid Mech., 9 (2007), 181-210.  doi: 10.1007/s00021-005-0195-1.  Google Scholar

[5]

C. Amrouche$ \rm\check{S} $. Ne$ \rm\check{c} $asová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, J. Differ. Equ., 244 (2008), 887-915.  doi: 10.1016/j.jde.2007.10.007.  Google Scholar

[6]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 223-228.  doi: 10.1016/j.crma.2009.12.020.  Google Scholar

[7]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Oseen and Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 335-339.  doi: 10.1016/j.crma.2009.12.021.  Google Scholar

[8]

C. Amrouche and M. Á. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal., 199 (2011), 597-651.  doi: 10.1007/s00205-010-0340-8.  Google Scholar

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2003. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[10]

M. Bulí$ \rm\check{c} $ekJ. Burczak and S. Schwarzacher, A unified theory for some non Newtonian fluids under singular forcing, SIAM J. Math. Anal., 48 (2016), 4241-4267.  doi: 10.1137/16M1073881.  Google Scholar

[11]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Diff. Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[12]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.   Google Scholar

[13]

E. V. Chizhonkov, A system of equations of magnetohydrodynamic type, Dokl. Akad. Nauk SSSR, 278 (1984), 1074-1077.   Google Scholar

[14]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3 Spectral Theory and Applications, Springer-Verlag Berlin Heidelberg, 1990.  Google Scholar

[15]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.  Google Scholar

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Second Edition, Springer, New York, 2011. Google Scholar

[17]

G. P. GaldiC. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74.  doi: 10.1007/s00208-004-0573-7.  Google Scholar

[18]

C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z., 165 (1979), 193-197.  doi: 10.1007/BF01182469.  Google Scholar

[19]

D. Glibarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

F. Guillénâ€"GonzálezM. A. Rodríguez-Bellido and M. A. Rojas-Medar, Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 807-826.  doi: 10.1016/j.anihpc.2003.11.002.  Google Scholar

[21]

M. D. GunzburgerA. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56 (1991), 523-563.  doi: 10.1090/S0025-5718-1991-1066834-0.  Google Scholar

[22]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[23]

R. Hide, On planetary atmospheres and interiors, In Mathematical Problems in the Gcophysical Sciences Ⅰ. Amer. Math. Soc., Providence, RI, (1971), 229-353. Google Scholar

[24]

H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal., 193 (2009), 117-152.  doi: 10.1007/s00205-008-0168-7.  Google Scholar

[25]

I. KondrashukE. A. Notte-Cuello and M. A. Rojas-Medar, Magnetohydrodynamics's type equations over Clifford algebras, J. Nonlinear Math. Phys., 17 (2010), 337-347.  doi: 10.1142/S1402925110000933.  Google Scholar

[26]

H. Li and C. Lin, Spatial decay bounds for time dependent magnetohydrodynamic geophysical flow, Nonlinear Anal. Real World Appl., 11 (2010), 665-682.  doi: 10.1016/j.nonrwa.2009.01.013.  Google Scholar

[27]

Y. Li and C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\Bbb R^3$, J. Dynam. Differential Equations, 18 (2006), 393-426.  doi: 10.1007/s10884-006-9012-7.  Google Scholar

[28]

E. Maru$ \rm\check{s} $ić-Paloka, Solvability of the Navier-Stokes system with $L^2$ boundary data, Appl. Math. Optim., 41 (2000), 365-375.  doi: 10.1007/s002459911018.  Google Scholar

[29]

M. A. Rojas-Medar and J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85-97.  doi: 10.22199/S07160917.1994.0002.00002.  Google Scholar

[30]

M. A. Rojas-Medar and J. L. Boldrini, Global strong solutions of equations of magnetohydrodynamic type, J. Austral. Math. Soc., Ser. B, 38 (1997), 291-306.  doi: 10.1017/S0334270000000680.  Google Scholar

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[32]

E. J. Villamizar-RoaH. Lamos-Díaz and G. Arenas-Díaz, Very weak solutions for the magnetohydrodynamic type equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 957-972.  doi: 10.3934/dcdsb.2008.10.957.  Google Scholar

[33]

E. J. Villamizar-RoaM. A. Rodríguez-BellidoM. A and Ro jas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.  Google Scholar

[34]

Y. Zeng, Steady states of Hall-MHD system, J. Math. Anal. Appl., 451 (2017), 757-793.  doi: 10.1016/j.jmaa.2017.02.023.  Google Scholar

[35]

C. S. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759-781.  doi: 10.1002/mma.394.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (165)
  • HTML views (152)
  • Cited by (0)

Other articles
by authors

[Back to Top]