October  2020, 40(10): 5617-5638. doi: 10.3934/dcds.2020240

Existence and uniqueness of very weak solution of the MHD type system

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received  October 2018 Revised  April 2020 Published  June 2020

This paper studies the very weak solution to the steady MHD type system in a bounded domain. We prove the existence of very weak solutions to the MHD type system for arbitrary large external forces $ ({\bf f},{\bf{g}}) $ in $ L^r({\Omega})\times [X_{\theta',q'}({\Omega})]' $ and suitable boundary data $ ({\mathcal B}^0,{\mathcal U}^0) $ in $ W^{-1/p,p}({\partial}{\Omega})\times W^{-1/q,q}({\partial}{\Omega}) $, under certain assumptions on $ p,q,r,\theta $. The uniqueness of very weak solution for small data $ ({\bf f},{\bf{g}},{\mathcal B}^0,{\mathcal U}^0) $ is also studied.

Citation: Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240
References:
[1]

G. V. Alekseev, Solvability of control problems for stationary equations of the magnetohydrodynamics of a viscous fluid., Siberian Math. J., 45 (2004), 197-213.  doi: 10.1023/B:SIMJ.0000021277.82617.3b.

[2]

K. A. Ames and J. C. Song, Decay bounds for magnetohydrodynamic geophysical flow, Nonlinear Anal., 65 (2006), 1318-1333.  doi: 10.1016/j.na.2005.10.013.

[3]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslov. Math. J., 44 (1994), 109-140. 

[4]

C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in $\Bbb R^3$, J. Math. Fluid Mech., 9 (2007), 181-210.  doi: 10.1007/s00021-005-0195-1.

[5]

C. Amrouche$ \rm\check{S} $. Ne$ \rm\check{c} $asová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, J. Differ. Equ., 244 (2008), 887-915.  doi: 10.1016/j.jde.2007.10.007.

[6]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 223-228.  doi: 10.1016/j.crma.2009.12.020.

[7]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Oseen and Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 335-339.  doi: 10.1016/j.crma.2009.12.021.

[8]

C. Amrouche and M. Á. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal., 199 (2011), 597-651.  doi: 10.1007/s00205-010-0340-8.

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2003. doi: 10.1007/978-1-4614-5975-0.

[10]

M. Bulí$ \rm\check{c} $ekJ. Burczak and S. Schwarzacher, A unified theory for some non Newtonian fluids under singular forcing, SIAM J. Math. Anal., 48 (2016), 4241-4267.  doi: 10.1137/16M1073881.

[11]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Diff. Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[12]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. 

[13]

E. V. Chizhonkov, A system of equations of magnetohydrodynamic type, Dokl. Akad. Nauk SSSR, 278 (1984), 1074-1077. 

[14]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3 Spectral Theory and Applications, Springer-Verlag Berlin Heidelberg, 1990.

[15]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Second Edition, Springer, New York, 2011.

[17]

G. P. GaldiC. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74.  doi: 10.1007/s00208-004-0573-7.

[18]

C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z., 165 (1979), 193-197.  doi: 10.1007/BF01182469.

[19]

D. Glibarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[20]

F. Guillénâ€"GonzálezM. A. Rodríguez-Bellido and M. A. Rojas-Medar, Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 807-826.  doi: 10.1016/j.anihpc.2003.11.002.

[21]

M. D. GunzburgerA. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56 (1991), 523-563.  doi: 10.1090/S0025-5718-1991-1066834-0.

[22]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[23]

R. Hide, On planetary atmospheres and interiors, In Mathematical Problems in the Gcophysical Sciences Ⅰ. Amer. Math. Soc., Providence, RI, (1971), 229-353.

[24]

H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal., 193 (2009), 117-152.  doi: 10.1007/s00205-008-0168-7.

[25]

I. KondrashukE. A. Notte-Cuello and M. A. Rojas-Medar, Magnetohydrodynamics's type equations over Clifford algebras, J. Nonlinear Math. Phys., 17 (2010), 337-347.  doi: 10.1142/S1402925110000933.

[26]

H. Li and C. Lin, Spatial decay bounds for time dependent magnetohydrodynamic geophysical flow, Nonlinear Anal. Real World Appl., 11 (2010), 665-682.  doi: 10.1016/j.nonrwa.2009.01.013.

[27]

Y. Li and C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\Bbb R^3$, J. Dynam. Differential Equations, 18 (2006), 393-426.  doi: 10.1007/s10884-006-9012-7.

[28]

E. Maru$ \rm\check{s} $ić-Paloka, Solvability of the Navier-Stokes system with $L^2$ boundary data, Appl. Math. Optim., 41 (2000), 365-375.  doi: 10.1007/s002459911018.

[29]

M. A. Rojas-Medar and J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85-97.  doi: 10.22199/S07160917.1994.0002.00002.

[30]

M. A. Rojas-Medar and J. L. Boldrini, Global strong solutions of equations of magnetohydrodynamic type, J. Austral. Math. Soc., Ser. B, 38 (1997), 291-306.  doi: 10.1017/S0334270000000680.

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[32]

E. J. Villamizar-RoaH. Lamos-Díaz and G. Arenas-Díaz, Very weak solutions for the magnetohydrodynamic type equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 957-972.  doi: 10.3934/dcdsb.2008.10.957.

[33]

E. J. Villamizar-RoaM. A. Rodríguez-BellidoM. A and Ro jas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.

[34]

Y. Zeng, Steady states of Hall-MHD system, J. Math. Anal. Appl., 451 (2017), 757-793.  doi: 10.1016/j.jmaa.2017.02.023.

[35]

C. S. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759-781.  doi: 10.1002/mma.394.

show all references

References:
[1]

G. V. Alekseev, Solvability of control problems for stationary equations of the magnetohydrodynamics of a viscous fluid., Siberian Math. J., 45 (2004), 197-213.  doi: 10.1023/B:SIMJ.0000021277.82617.3b.

[2]

K. A. Ames and J. C. Song, Decay bounds for magnetohydrodynamic geophysical flow, Nonlinear Anal., 65 (2006), 1318-1333.  doi: 10.1016/j.na.2005.10.013.

[3]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslov. Math. J., 44 (1994), 109-140. 

[4]

C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in $\Bbb R^3$, J. Math. Fluid Mech., 9 (2007), 181-210.  doi: 10.1007/s00021-005-0195-1.

[5]

C. Amrouche$ \rm\check{S} $. Ne$ \rm\check{c} $asová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, J. Differ. Equ., 244 (2008), 887-915.  doi: 10.1016/j.jde.2007.10.007.

[6]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 223-228.  doi: 10.1016/j.crma.2009.12.020.

[7]

C. Amrouche and M. Á. Rodríguez-Bellido, Very weak solutions for the stationary Oseen and Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 348 (2010), 335-339.  doi: 10.1016/j.crma.2009.12.021.

[8]

C. Amrouche and M. Á. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal., 199 (2011), 597-651.  doi: 10.1007/s00205-010-0340-8.

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2003. doi: 10.1007/978-1-4614-5975-0.

[10]

M. Bulí$ \rm\check{c} $ekJ. Burczak and S. Schwarzacher, A unified theory for some non Newtonian fluids under singular forcing, SIAM J. Math. Anal., 48 (2016), 4241-4267.  doi: 10.1137/16M1073881.

[11]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Diff. Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[12]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. 

[13]

E. V. Chizhonkov, A system of equations of magnetohydrodynamic type, Dokl. Akad. Nauk SSSR, 278 (1984), 1074-1077. 

[14]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3 Spectral Theory and Applications, Springer-Verlag Berlin Heidelberg, 1990.

[15]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Second Edition, Springer, New York, 2011.

[17]

G. P. GaldiC. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74.  doi: 10.1007/s00208-004-0573-7.

[18]

C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z., 165 (1979), 193-197.  doi: 10.1007/BF01182469.

[19]

D. Glibarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[20]

F. Guillénâ€"GonzálezM. A. Rodríguez-Bellido and M. A. Rojas-Medar, Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 807-826.  doi: 10.1016/j.anihpc.2003.11.002.

[21]

M. D. GunzburgerA. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56 (1991), 523-563.  doi: 10.1090/S0025-5718-1991-1066834-0.

[22]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[23]

R. Hide, On planetary atmospheres and interiors, In Mathematical Problems in the Gcophysical Sciences Ⅰ. Amer. Math. Soc., Providence, RI, (1971), 229-353.

[24]

H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal., 193 (2009), 117-152.  doi: 10.1007/s00205-008-0168-7.

[25]

I. KondrashukE. A. Notte-Cuello and M. A. Rojas-Medar, Magnetohydrodynamics's type equations over Clifford algebras, J. Nonlinear Math. Phys., 17 (2010), 337-347.  doi: 10.1142/S1402925110000933.

[26]

H. Li and C. Lin, Spatial decay bounds for time dependent magnetohydrodynamic geophysical flow, Nonlinear Anal. Real World Appl., 11 (2010), 665-682.  doi: 10.1016/j.nonrwa.2009.01.013.

[27]

Y. Li and C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\Bbb R^3$, J. Dynam. Differential Equations, 18 (2006), 393-426.  doi: 10.1007/s10884-006-9012-7.

[28]

E. Maru$ \rm\check{s} $ić-Paloka, Solvability of the Navier-Stokes system with $L^2$ boundary data, Appl. Math. Optim., 41 (2000), 365-375.  doi: 10.1007/s002459911018.

[29]

M. A. Rojas-Medar and J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85-97.  doi: 10.22199/S07160917.1994.0002.00002.

[30]

M. A. Rojas-Medar and J. L. Boldrini, Global strong solutions of equations of magnetohydrodynamic type, J. Austral. Math. Soc., Ser. B, 38 (1997), 291-306.  doi: 10.1017/S0334270000000680.

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[32]

E. J. Villamizar-RoaH. Lamos-Díaz and G. Arenas-Díaz, Very weak solutions for the magnetohydrodynamic type equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 957-972.  doi: 10.3934/dcdsb.2008.10.957.

[33]

E. J. Villamizar-RoaM. A. Rodríguez-BellidoM. A and Ro jas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.

[34]

Y. Zeng, Steady states of Hall-MHD system, J. Math. Anal. Appl., 451 (2017), 757-793.  doi: 10.1016/j.jmaa.2017.02.023.

[35]

C. S. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759-781.  doi: 10.1002/mma.394.

[1]

Elder Jesús Villamizar-Roa, Henry Lamos-Díaz, Gilberto Arenas-Díaz. Very weak solutions for the magnetohydrodynamic type equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 957-972. doi: 10.3934/dcdsb.2008.10.957

[2]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[3]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[4]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure and Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[5]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[6]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[7]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[8]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[9]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[10]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[11]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[12]

Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021307

[13]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[14]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[15]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[16]

Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic and Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012

[17]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[18]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[19]

Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326

[20]

Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic and Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (288)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]