\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Evolution of dispersal in advective homogeneous environments

  • * Corresponding author

    * Corresponding author

The first author is supported by the National Natural Science Foundation of China(Nos. 11801089, 11901110) and the second author is supported by the Postdoctoral Science Foundation of China(No.2018M643281), the Fundamental Research Funds for the Central Universities (No. 191gpy246) and National Natural Science Foundation of China(No. 11901596)

Abstract Full Text(HTML) Related Papers Cited by
  • The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been investigated. In contrast, the role of intermediate advection still remains poorly understood. This paper is devoted to studying a two-species competition model in a one-dimensional advective homogeneous environment, where the two species are identical except their diffusion rates and advection rates. Zhou (P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp) considered the system under the no-flux boundary conditions. It is pointed that, in this paper, we focus on the case where the upstream end has the Neumann boundary condition and the downstream end has the hostile condition. By employing a new approach, we firstly determine necessary and sufficient conditions for the persistence of the corresponding single species model, in forms of the critical diffusion rate and critical advection rate. Furthermore, for the two-species model, we find that (i) the strategy of slower diffusion together with faster advection is always favorable; (ii) two species will also coexist when the faster advection with appropriate faster diffusion.

    Mathematics Subject Classification: Primary:35K57, 35K61, 37C65, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.
    [2] J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.
    [3] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
    [4] A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), 244-251.  doi: 10.1016/0040-5809(83)90027-8.
    [5] X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Comm. Pure. Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.
    [6] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.
    [7] M. G. Kre$ \rm\check{i} $n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.), 3 (1948), 3-95. 
    [8] Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in Mathematical Biosciences â…£, Lecture Notes in Math., 1922, Springer, Berlin, (2008), 171â€"205. doi: 10.1007/978-3-540-74331-6_5.
    [9] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.
    [10] Y. LouD. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.
    [11] Y. LouX.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), 47-82.  doi: 10.1016/j.matpur.2018.06.010.
    [12] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.
    [13] F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.
    [14] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philedelphia, 2011. doi: 10.1137/1.9781611971972.
    [15] R. Peng and M. Zhou, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second-order elliptic operator, Indiana Univ. Math. J., 67 (2018), 2523-2568.  doi: 10.1512/iumj.2018.67.7547.
    [16] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995.
    [17] D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237. 
    [18] D. Tang and Y. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments, J. Differential Equations, 269 (2020), 1465-1483.  doi: 10.1016/j.jde.2020.01.011.
    [19] D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.  doi: 10.1016/j.jde.2019.09.003.
    [20] O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469. 
    [21] F. Xu and W. Gan, On a Lotka-Volterra type competition model from river ecology, Nonlinear Anal. Real World Appl., 47 (2019), 373-384.  doi: 10.1016/j.nonrwa.2018.11.011.
    [22] F. Xu, W. Gan and D. Tang, Population dynamics and evolution in river ecosystems, Nonlinear Anal. Real World Appl., 51 (2020), 102983, 16 pp. doi: 10.1016/j.nonrwa.2019.102983.
    [23] X.-Q. Zhao and P. Zhou, On a Lotka-Volterra competition model: The effects of advection and spatial variation, Calc. Var. Partial Differential Equations, 55 (2016), Art. 73, 25 pp. doi: 10.1007/s00526-016-1021-8.
    [24] P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.
    [25] P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.
    [26] P. Zhou and X.-Q. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 30 (2018), 613-636.  doi: 10.1007/s10884-016-9562-2.
    [27] P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.  doi: 10.1016/j.jde.2017.12.005.
  • 加载中
SHARE

Article Metrics

HTML views(285) PDF downloads(242) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return