\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Filtering the $ L^2- $critical focusing Schrödinger equation

The author is partially supported by the grant "ANAÉ" ANR-13-BS01-0010-03 of the 'Agence Nationale de la Recherche'. This research is carried out during the author's PhD studies, financed by the PhD fellowship of École Doctorale de Mathématique Hadamard

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study the influence of Szegő projector on the $ L^2- $critical non linear focusing Schrödinger equation, leading to the quintic focusing NLS–Szegő equation on the line

    $ \begin{equation*} i\partial_t u + \partial_x^2 u + \Pi(|u|^4 u) = 0, \quad (t, x)\in \mathbb{R}\times \mathbb{R}, \qquad u(0, \cdot) = u_0. \end{equation*} $

    It has no Galilean invariance but the momentum $ P(u) = \langle -i\partial_x u, u\rangle_{L^2} $ becomes the $ \dot{H}^{\frac{1}{2}}- $norm. Thus this equation is globally well-posed in $ H^1_+ = \Pi(H^1(\mathbb{R})) $, for every initial datum $ u_0 $. The solution $ L^2- $scatters both forward and backward in time if $ u_0 $ has sufficiently small mass. By using the concentration–compactness principle, we prove the orbital stability of some weak type of the traveling wave : $ u_{\omega, c}(t, x) = e^{i\omega t}Q(x+ct) $, for some $ \omega, c>0 $, where $ Q $ is a ground state associated to Gagliardo–Nirenberg type functional

    $ \begin{equation*} I^{(\gamma)}(f) = \frac{\|\partial_x f\|_{L^2}^2\|f\|_{L^2}^{4}+\gamma \langle -i \partial_x f , f\rangle_{L^2}^2 \|f\|_{L^2}^2}{\|f\|_{L^{6}}^{6}}, \qquad \forall f\in H^1_+ \backslash \{0\}, \end{equation*} $

    for some $ \gamma\geq 0 $. Its Euler–Lagrange equation is a non local elliptic equation. The ground states are completely classified in the case $ \gamma = 2 $, leading to the actual orbital stability for appropriate traveling waves. As a consequence, the scattering mass threshold of the focusing quintic NLS–Szegő equation is strictly below the mass of ground state associated to the functional $ I^{(0)} $, unlike the recent result by Dodson [8] on the usual quintic focusing non linear Schrödinger equation.

    Mathematics Subject Classification: Primary: 35B35, 35P25, 35C07; Secondary: 30H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.  doi: 10.1007/BF02392447.
    [2] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.
    [3] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, Vol. 26, Instituto de Matemática UFRJ, 1996.
    [4] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, New York University, Courant Institute of Mathematical Sciences, AMS, Providence, RI, 2003. doi: 10.1090/cln/010.
    [5] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.
    [6] T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta. Math., 61 (1988), 477-494.  doi: 10.1007/BF01258601.
    [7] T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.
    [8] B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.
    [9] D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS), 9 (2007), 739-774.  doi: 10.4171/JEMS/95.
    [10] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.
    [11] R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.
    [12] P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.
    [13] P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Sci. l'Éc. Norm. Supér., 43 (2010), 761-810.  doi: 10.24033/asens.2133.
    [14] P. Gérard and S. Grellier, The cubic Szegő equation and Hankel operators, in Astérisque Vol. 389, 2017.
    [15] P. Gérard, E. Lenzmann, O. Pocovnicu and P. Raphaël, A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, 4 (2018), 166 pp. doi: 10.1007/s40818-017-0043-7.
    [16] R. Glassey, On the blowing up of solutions to the Cauchy problem for non linear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.
    [17] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), No. 46, 2815–2828. doi: 10.1155/IMRN.2005.2815.
    [18] T. Hmidi and S. Keraani, Remarks on the blow-up for the $L^2-$critical nonlinear Schrödinger equations, SIAM J. Math. Anal., 38 (2006), 1035-1047.  doi: 10.1137/050624054.
    [19] C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.
    [20] C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.
    [21] R. Killip and M. Vişan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012), 855-885.  doi: 10.2140/apde.2012.5.855.
    [22] R. KillipM. Vişan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. PDE., 34 (2009), 1531-1565.  doi: 10.1080/03605300903328109.
    [23] J. Krieger and J. Lührmann, Concentration compactness for the critical Maxwell-Klein-Gordon equation, Ann. PDE, 1 (2015), no. 1, Art. 5,208 pp. doi: 10.1007/s40818-015-0004-y.
    [24] J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, Series of Lectures in Mathematics, European Mathematical Society, Zúrich, 2012. doi: 10.4171/106.
    [25] E. Lenzmann and J. Sok, A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order, preprint, 2018, arXiv: 1805.06294. doi: 10.1093/imrn/rnz274.
    [26] P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 1, Ann. Inst. Henri Poincaré, Analyse non linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.
    [27] P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 2, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 1 (1984), 223-283. 
    [28] F. Merle and P. Raphaël, On universality of blow-up profile for $L^2-$critical non linear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.
    [29] T. Ogawa and Y. Tsutsumi, Blow-up of $H^1-$solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.
    [30] G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.
    [31] O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.
    [32] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.
    [33] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.
    [34] R. Sun, Long time behavior of the NLS-Szegő equation, Dyn. Partial. Differ. Equ., 16 (2019), 325-357.  doi: 10.4310/DPDE.2019.v16.n4.a2.
    [35] R. Sun, Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds, preprint, arXiv: 2004.10007.
    [36] T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.
    [37] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576. 
  • 加载中
SHARE

Article Metrics

HTML views(1679) PDF downloads(307) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return