October  2020, 40(10): 5973-5990. doi: 10.3934/dcds.2020255

Filtering the $ L^2- $critical focusing Schrödinger equation

Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud Ⅺ, CNRS, Université Paris-Saclay, F-91405 Orsay, France

Received  February 2020 Published  June 2020

Fund Project: The author is partially supported by the grant "ANAÉ" ANR-13-BS01-0010-03 of the 'Agence Nationale de la Recherche'. This research is carried out during the author's PhD studies, financed by the PhD fellowship of École Doctorale de Mathématique Hadamard

We study the influence of Szegő projector on the
$ L^2- $
critical non linear focusing Schrödinger equation, leading to the quintic focusing NLS–Szegő equation on the line
$ \begin{equation*} i\partial_t u + \partial_x^2 u + \Pi(|u|^4 u) = 0, \quad (t, x)\in \mathbb{R}\times \mathbb{R}, \qquad u(0, \cdot) = u_0. \end{equation*} $
It has no Galilean invariance but the momentum
$ P(u) = \langle -i\partial_x u, u\rangle_{L^2} $
becomes the
$ \dot{H}^{\frac{1}{2}}- $
norm. Thus this equation is globally well-posed in
$ H^1_+ = \Pi(H^1(\mathbb{R})) $
, for every initial datum
$ u_0 $
. The solution
$ L^2- $
scatters both forward and backward in time if
$ u_0 $
has sufficiently small mass. By using the concentration–compactness principle, we prove the orbital stability of some weak type of the traveling wave :
$ u_{\omega, c}(t, x) = e^{i\omega t}Q(x+ct) $
, for some
$ \omega, c>0 $
, where
$ Q $
is a ground state associated to Gagliardo–Nirenberg type functional
$ \begin{equation*} I^{(\gamma)}(f) = \frac{\|\partial_x f\|_{L^2}^2\|f\|_{L^2}^{4}+\gamma \langle -i \partial_x f , f\rangle_{L^2}^2 \|f\|_{L^2}^2}{\|f\|_{L^{6}}^{6}}, \qquad \forall f\in H^1_+ \backslash \{0\}, \end{equation*} $
for some
$ \gamma\geq 0 $
. Its Euler–Lagrange equation is a non local elliptic equation. The ground states are completely classified in the case
$ \gamma = 2 $
, leading to the actual orbital stability for appropriate traveling waves. As a consequence, the scattering mass threshold of the focusing quintic NLS–Szegő equation is strictly below the mass of ground state associated to the functional
$ I^{(0)} $
, unlike the recent result by Dodson [8] on the usual quintic focusing non linear Schrödinger equation.
Citation: Ruoci Sun. Filtering the $ L^2- $critical focusing Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5973-5990. doi: 10.3934/dcds.2020255
References:
[1]

C. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.  doi: 10.1007/BF02392447.  Google Scholar

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[3]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, Vol. 26, Instituto de Matemática UFRJ, 1996. Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, New York University, Courant Institute of Mathematical Sciences, AMS, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[5]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[6]

T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta. Math., 61 (1988), 477-494.  doi: 10.1007/BF01258601.  Google Scholar

[7]

T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.  Google Scholar

[8]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[9]

D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS), 9 (2007), 739-774.  doi: 10.4171/JEMS/95.  Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[11]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[12]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[13]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Sci. l'Éc. Norm. Supér., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[14]

P. Gérard and S. Grellier, The cubic Szegő equation and Hankel operators, in Astérisque Vol. 389, 2017.  Google Scholar

[15]

P. Gérard, E. Lenzmann, O. Pocovnicu and P. Raphaël, A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, 4 (2018), 166 pp. doi: 10.1007/s40818-017-0043-7.  Google Scholar

[16]

R. Glassey, On the blowing up of solutions to the Cauchy problem for non linear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[17]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), No. 46, 2815–2828. doi: 10.1155/IMRN.2005.2815.  Google Scholar

[18]

T. Hmidi and S. Keraani, Remarks on the blow-up for the $L^2-$critical nonlinear Schrödinger equations, SIAM J. Math. Anal., 38 (2006), 1035-1047.  doi: 10.1137/050624054.  Google Scholar

[19]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[20]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[21]

R. Killip and M. Vişan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012), 855-885.  doi: 10.2140/apde.2012.5.855.  Google Scholar

[22]

R. KillipM. Vişan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. PDE., 34 (2009), 1531-1565.  doi: 10.1080/03605300903328109.  Google Scholar

[23]

J. Krieger and J. Lührmann, Concentration compactness for the critical Maxwell-Klein-Gordon equation, Ann. PDE, 1 (2015), no. 1, Art. 5,208 pp. doi: 10.1007/s40818-015-0004-y.  Google Scholar

[24]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, Series of Lectures in Mathematics, European Mathematical Society, Zúrich, 2012. doi: 10.4171/106.  Google Scholar

[25]

E. Lenzmann and J. Sok, A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order, preprint, 2018, arXiv: 1805.06294. doi: 10.1093/imrn/rnz274.  Google Scholar

[26]

P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 1, Ann. Inst. Henri Poincaré, Analyse non linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[27]

P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 2, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 1 (1984), 223-283.   Google Scholar

[28]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2-$critical non linear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[29]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1-$solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[30]

G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[31]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[32]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[33]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[34]

R. Sun, Long time behavior of the NLS-Szegő equation, Dyn. Partial. Differ. Equ., 16 (2019), 325-357.  doi: 10.4310/DPDE.2019.v16.n4.a2.  Google Scholar

[35]

R. Sun, Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds, preprint, arXiv: 2004.10007. Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.   Google Scholar

show all references

References:
[1]

C. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.  doi: 10.1007/BF02392447.  Google Scholar

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[3]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, Vol. 26, Instituto de Matemática UFRJ, 1996. Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, New York University, Courant Institute of Mathematical Sciences, AMS, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[5]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[6]

T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta. Math., 61 (1988), 477-494.  doi: 10.1007/BF01258601.  Google Scholar

[7]

T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.  Google Scholar

[8]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[9]

D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS), 9 (2007), 739-774.  doi: 10.4171/JEMS/95.  Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[11]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[12]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[13]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Sci. l'Éc. Norm. Supér., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[14]

P. Gérard and S. Grellier, The cubic Szegő equation and Hankel operators, in Astérisque Vol. 389, 2017.  Google Scholar

[15]

P. Gérard, E. Lenzmann, O. Pocovnicu and P. Raphaël, A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, 4 (2018), 166 pp. doi: 10.1007/s40818-017-0043-7.  Google Scholar

[16]

R. Glassey, On the blowing up of solutions to the Cauchy problem for non linear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[17]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), No. 46, 2815–2828. doi: 10.1155/IMRN.2005.2815.  Google Scholar

[18]

T. Hmidi and S. Keraani, Remarks on the blow-up for the $L^2-$critical nonlinear Schrödinger equations, SIAM J. Math. Anal., 38 (2006), 1035-1047.  doi: 10.1137/050624054.  Google Scholar

[19]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[20]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[21]

R. Killip and M. Vişan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012), 855-885.  doi: 10.2140/apde.2012.5.855.  Google Scholar

[22]

R. KillipM. Vişan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. PDE., 34 (2009), 1531-1565.  doi: 10.1080/03605300903328109.  Google Scholar

[23]

J. Krieger and J. Lührmann, Concentration compactness for the critical Maxwell-Klein-Gordon equation, Ann. PDE, 1 (2015), no. 1, Art. 5,208 pp. doi: 10.1007/s40818-015-0004-y.  Google Scholar

[24]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, Series of Lectures in Mathematics, European Mathematical Society, Zúrich, 2012. doi: 10.4171/106.  Google Scholar

[25]

E. Lenzmann and J. Sok, A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order, preprint, 2018, arXiv: 1805.06294. doi: 10.1093/imrn/rnz274.  Google Scholar

[26]

P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 1, Ann. Inst. Henri Poincaré, Analyse non linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[27]

P.-L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case. Part 2, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 1 (1984), 223-283.   Google Scholar

[28]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2-$critical non linear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[29]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1-$solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[30]

G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[31]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[32]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[33]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[34]

R. Sun, Long time behavior of the NLS-Szegő equation, Dyn. Partial. Differ. Equ., 16 (2019), 325-357.  doi: 10.4310/DPDE.2019.v16.n4.a2.  Google Scholar

[35]

R. Sun, Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds, preprint, arXiv: 2004.10007. Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.   Google Scholar

[1]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[2]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[3]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

[4]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[5]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[6]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[7]

Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209

[8]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[9]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[10]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[11]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[12]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[13]

Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099

[14]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[15]

Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085

[16]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[17]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[18]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[19]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[20]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (23)
  • Cited by (0)

Other articles
by authors

[Back to Top]