October  2020, 40(10): 6043-6059. doi: 10.3934/dcds.2020258

No-shadowing for singular hyperbolic sets with a singularity

1. 

School of Mathematical Sciences, Beihang University, Beijing 100191, China

2. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  March 2020 Published  June 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (No. 11671025 and No. 11571188) and the Fundamental Research Funds for the Central Universities. The second author is supported by National Natural Science Foundation of China (No. 11231001)

We prove that every singular hyperbolic chain transitive set with a singularity does not admit the shadowing property. Using this result we show that if a star flow has the shadowing property on its chain recurrent set then it satisfies Axiom A and the no-cycle conditions; and that if a multisingular hyperbolic set has the shadowing property then it is hyperbolic.

Citation: Xiao Wen, Lan Wen. No-shadowing for singular hyperbolic sets with a singularity. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 6043-6059. doi: 10.3934/dcds.2020258
References:
[1]

V. AraujoM. J. PacificoE. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.

[2]

C. Bonatti and A. da Luz, Star flows and multisingular hyperbolicity, preprint, arXiv: 1705.05799.

[3]

S. Crovisier, A. da Luz, D. Yang and J. Zhang, On the notions of singular domination and (multi-)singular Hyperbolicity, preprint, arXiv: 2003.07099.

[4]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.  doi: 10.1007/s00222-005-0479-3.

[5]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.

[6]

M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property, J. Math. Soc. Japan, 37 (1985), 489-514.  doi: 10.2969/jmsj/03730489.

[7]

M. LiS. Gan and L. Wen, Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., 13 (2005), 239-269.  doi: 10.3934/dcds.2005.13.239.

[8]

S. T. Liao, A basic property of a certain class of differential systems (in Chinese), Acta Math. Sinica, 22 (1979), 316-343. 

[9]

R. Mañé, Contributions to the stablity conjecture, Topology, 17 (1978), 383-396.  doi: 10.1016/0040-9383(78)90005-8.

[10]

C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.  doi: 10.1017/S0143385702001621.

[11]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2), 160 (2004), 375–432. doi: 10.4007/annals.2004.160.375.

[12]

Y. ShiS. Gan and L. Wen, On the singular hyperbolicity of star flows, J. Mod. Dyn., 8 (2014), 191-219.  doi: 10.3934/jmd.2014.8.191.

[13]

N. SumiP. Varandas and K. Yamamoto, Specification and partial hyperbolicity for flows, Dyn. Syst., 30 (2015), 501-524.  doi: 10.1080/14689367.2015.1081380.

[14]

X. Wen and L. Wen, A rescaled expansiveness for flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.  doi: 10.1090/tran/7382.

[15]

X. WenL. Wen and D. Yang, A characterization of singular hyperbolicity via the linear Poincaré flow, J. Differential Equations, 268 (2020), 4256-4275.  doi: 10.1016/j.jde.2019.10.029.

[16]

T. Yamanaka, A characterization of dense vector fields in $\eth^1(M)$ on 3-manifolds, Hokkaido Math. J., 31 (2002), 97-105.  doi: 10.14492/hokmj/1350911772.

show all references

References:
[1]

V. AraujoM. J. PacificoE. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.

[2]

C. Bonatti and A. da Luz, Star flows and multisingular hyperbolicity, preprint, arXiv: 1705.05799.

[3]

S. Crovisier, A. da Luz, D. Yang and J. Zhang, On the notions of singular domination and (multi-)singular Hyperbolicity, preprint, arXiv: 2003.07099.

[4]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.  doi: 10.1007/s00222-005-0479-3.

[5]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.

[6]

M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property, J. Math. Soc. Japan, 37 (1985), 489-514.  doi: 10.2969/jmsj/03730489.

[7]

M. LiS. Gan and L. Wen, Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., 13 (2005), 239-269.  doi: 10.3934/dcds.2005.13.239.

[8]

S. T. Liao, A basic property of a certain class of differential systems (in Chinese), Acta Math. Sinica, 22 (1979), 316-343. 

[9]

R. Mañé, Contributions to the stablity conjecture, Topology, 17 (1978), 383-396.  doi: 10.1016/0040-9383(78)90005-8.

[10]

C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.  doi: 10.1017/S0143385702001621.

[11]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2), 160 (2004), 375–432. doi: 10.4007/annals.2004.160.375.

[12]

Y. ShiS. Gan and L. Wen, On the singular hyperbolicity of star flows, J. Mod. Dyn., 8 (2014), 191-219.  doi: 10.3934/jmd.2014.8.191.

[13]

N. SumiP. Varandas and K. Yamamoto, Specification and partial hyperbolicity for flows, Dyn. Syst., 30 (2015), 501-524.  doi: 10.1080/14689367.2015.1081380.

[14]

X. Wen and L. Wen, A rescaled expansiveness for flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.  doi: 10.1090/tran/7382.

[15]

X. WenL. Wen and D. Yang, A characterization of singular hyperbolicity via the linear Poincaré flow, J. Differential Equations, 268 (2020), 4256-4275.  doi: 10.1016/j.jde.2019.10.029.

[16]

T. Yamanaka, A characterization of dense vector fields in $\eth^1(M)$ on 3-manifolds, Hokkaido Math. J., 31 (2002), 97-105.  doi: 10.14492/hokmj/1350911772.

[1]

Yi Shi, Shaobo Gan, Lan Wen. On the singular-hyperbolicity of star flows. Journal of Modern Dynamics, 2014, 8 (2) : 191-219. doi: 10.3934/jmd.2014.8.191

[2]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[3]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[4]

Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963

[5]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[6]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[7]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040

[8]

Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509

[9]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[10]

Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[11]

Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143

[12]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[13]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[14]

Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic and Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415

[15]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[16]

Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121

[17]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[18]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[19]

Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346

[20]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (223)
  • HTML views (81)
  • Cited by (0)

Other articles
by authors

[Back to Top]