We prove that every singular hyperbolic chain transitive set with a singularity does not admit the shadowing property. Using this result we show that if a star flow has the shadowing property on its chain recurrent set then it satisfies Axiom A and the no-cycle conditions; and that if a multisingular hyperbolic set has the shadowing property then it is hyperbolic.
Citation: |
[1] |
V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.
doi: 10.1090/S0002-9947-08-04595-9.![]() ![]() ![]() |
[2] |
C. Bonatti and A. da Luz, Star flows and multisingular hyperbolicity, preprint, arXiv: 1705.05799.
![]() |
[3] |
S. Crovisier, A. da Luz, D. Yang and J. Zhang, On the notions of singular domination and (multi-)singular Hyperbolicity, preprint, arXiv: 2003.07099.
![]() |
[4] |
S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3.![]() ![]() ![]() |
[5] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042.![]() ![]() ![]() |
[6] |
M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property, J. Math. Soc. Japan, 37 (1985), 489-514.
doi: 10.2969/jmsj/03730489.![]() ![]() ![]() |
[7] |
M. Li, S. Gan and L. Wen, Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., 13 (2005), 239-269.
doi: 10.3934/dcds.2005.13.239.![]() ![]() ![]() |
[8] |
S. T. Liao, A basic property of a certain class of differential systems (in Chinese), Acta Math. Sinica, 22 (1979), 316-343.
![]() ![]() |
[9] |
R. Mañé, Contributions to the stablity conjecture, Topology, 17 (1978), 383-396.
doi: 10.1016/0040-9383(78)90005-8.![]() ![]() ![]() |
[10] |
C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.
doi: 10.1017/S0143385702001621.![]() ![]() ![]() |
[11] |
C. A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are
partially hyperbolic attractors or repellers, Ann. of Math. (2), 160 (2004), 375–432.
doi: 10.4007/annals.2004.160.375.![]() ![]() ![]() |
[12] |
Y. Shi, S. Gan and L. Wen, On the singular hyperbolicity of star flows, J. Mod. Dyn., 8 (2014), 191-219.
doi: 10.3934/jmd.2014.8.191.![]() ![]() ![]() |
[13] |
N. Sumi, P. Varandas and K. Yamamoto, Specification and partial hyperbolicity for flows, Dyn. Syst., 30 (2015), 501-524.
doi: 10.1080/14689367.2015.1081380.![]() ![]() ![]() |
[14] |
X. Wen and L. Wen, A rescaled expansiveness for flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.
doi: 10.1090/tran/7382.![]() ![]() ![]() |
[15] |
X. Wen, L. Wen and D. Yang, A characterization of singular hyperbolicity via the linear Poincaré flow, J. Differential Equations, 268 (2020), 4256-4275.
doi: 10.1016/j.jde.2019.10.029.![]() ![]() ![]() |
[16] |
T. Yamanaka, A characterization of dense vector fields in $\eth^1(M)$ on 3-manifolds, Hokkaido Math. J., 31 (2002), 97-105.
doi: 10.14492/hokmj/1350911772.![]() ![]() ![]() |