
-
Previous Article
Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps
- DCDS Home
- This Issue
-
Next Article
Function approximation via the subsampled Poincaré inequality
Stuart-type polar vortices on a rotating sphere
1. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria |
2. | Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom |
3. | Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom |
Stuart vortices are among the few known smooth explicit solutions of the planar Euler equations with a nonlinear vorticity, and they can be adapted to model inviscid flow on the surface of a fixed sphere. By means of a perturbative approach we show that the method used to investigate Stuart vortices on a fixed sphere provides insight into the dynamics of the large-scale zonal flows on a rotating sphere that model the background flow of polar vortices. Our approach takes advantage of the fact that while a sphere is spinning around its polar axis, every point on the sphere has the same angular velocity but its tangential velocity is proportional to the distance from the polar axis of rotation, so that points move fastest at the Equator and slower as we go towards the poles, both of which remain fixed.
References:
[1] |
A. C. B. Aguiar, P. L. Read, R. D. Wordsworth, T. Salter, R. H. Brown and Y. H. Yamazaki,
A laboratory model of of Saturn's North Polar Hexagon, Icarus, 206 (2010), 755-763.
doi: 10.1016/j.icarus.2009.10.022. |
[2] |
K. H. Baines, F. M. Flasar, N. Krupp and T. Stallard, Saturn in the 21st Century, Cambridge University Press, Cambridge, 2018.
doi: 10.1017/9781316227220.![]() |
[3] |
K. H. Baines, L. A. Sromovsky, P. M. Fry and et al.,
The eye of Saturn's North Polar Vortex: Unexpected cloud structures observed at high spatial resolution by Cassini/VIMS, Geophys. Res. Lett., 45 (2018), 5867-5875.
doi: 10.1029/2018GL078168. |
[4] |
R. Brown, J. P. Lebreton and J. Waite, Titan from Cassini-Huygens., Springer Netherlands, 2010,535 pp.
doi: 10.1007/978-1-4020-9215-2. |
[5] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates., Proc. A., 473 (2017), 20170063, 17 pp.
doi: 10.1098/rspa.2017.0063. |
[6] |
A. Constantin and V. S. Krishnamurthy,
Stuart-type vortices on a rotating sphere, J. Fluid Mech., 865 (2019), 1072-1084.
doi: 10.1017/jfm.2019.109. |
[7] |
D. G. Crowdy,
General solutions to the 2D Liouville equation, Internat. J. Engrg. Sci., 35 (1997), 141-149.
doi: 10.1016/S0020-7225(96)00080-8. |
[8] |
D. G. Crowdy,
Stuart vortices on a sphere, J. Fluid Mech., 398 (2004), 381-402.
doi: 10.1017/S0022112003007043. |
[9] |
M. K. Dougherty, L. W. Esposito and S. M. Krimigis, Saturn from Cassini-Huygens, Springer Netherlnds, 2009,805 pp.
doi: 10.1007/978-1-4020-9217-6. |
[10] |
P. L. Duren, Theory of $H^p$ Spaces., Academic Press, New York-London, 1970.
![]() |
[11] |
N. P. Fofonoff,
Steady flow in a frictionless homogeneous ocean, J. Marine Res., 13 (1954), 254-262.
|
[12] | A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982. Google Scholar |
[13] |
B. Haurwitz, The motion of atmospheric disturbances on a spherical Earth, J. Marine Res., 3 (1940), 254-267. Google Scholar |
[14] |
P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley & Sons, Inc., New York, 1986. |
[15] |
M. S. Longuet-Higgins,
Planetary waves on a rotating sphere Ⅱ, Proc. Roy. Soc. London Ser. A, 284 (1964), 40-68.
doi: 10.1098/rspa.1964.0116. |
[16] |
D. M. Mitchell, L. Montabone, S. Thomson and P. L. Read,
Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses, Quart. J. Roy. Meteorol. Soc., 141 (2015), 550-562.
doi: 10.1002/qj.2376. |
[17] |
K. Miyazaki and T. Iwasaki,
On the analysis of mean downward velocities around the Antarctic Polar Vortex, J. Atmospheric Sci., 65 (2008), 3989-4003.
doi: 10.1175/2008JAS2749.1. |
[18] |
R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Publishing Co., Amsterdam, 1985. |
[19] |
M. E. O'Neill, K. A. Emanuel and G. R. Flierl,
Weak jets and strong cyclones: Shallow-water modeling of giant planet polar caps, J. Atmospheric Sci., 73 (2016), 1841-1855.
doi: 10.1175/JAS-D-15-0314.1. |
[20] |
George Polya and Gordon Latta, Complex Variables, John Wiley & Sons, Inc., New York-London-Sydney, 1974. |
[21] |
A. C. Ponce, Elliptic PDEs, Measures and Capacities. From the Poisson Equations to Nonlinear Thomas-Fermi Problems, EMS Tracts in Mathematics, Vol. 23, European Math. Soc., Zürich, 2016.
doi: 10.4171/140. |
[22] |
R. K. Scott and D. G. Dritschel,
Downward wave propagation on the polar vortex, J. Atmospheric Sci., 62 (2005), 3382-3395.
doi: 10.1175/JAS3526.1. |
[23] |
J. T. Stuart,
On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29 (1967), 417-440.
doi: 10.1017/S0022112067000941. |
[24] | G. K. Vallis, Atmosphere and Ocean Fluid Dynamics, Cambridge University Press, Cambridge, 2006. Google Scholar |
[25] |
W. T. M. Verkley,
The construction of barotropic modons on a sphere, J. Atmospheric Sci., 41 (1984), 2492-2505.
doi: 10.1175/1520-0469(1984)041<2492:TCOBMO>2.0.CO;2. |
[26] |
T. von Larcher and P. D. Williams, Modeling Atmospheric and Oceanic Flows, Amer. Geophys. Union, 2015. Google Scholar |
[27] |
P. Wu and W. T. M Verkley, Nonlinear structures with multivalued ($q$, $\psi$) relationships–exact solutions of the barotropic vorticity equation on a sphere, Geophys. Astrophys. Fluid Dyn., 69 (1993), 77-94. Google Scholar |
show all references
References:
[1] |
A. C. B. Aguiar, P. L. Read, R. D. Wordsworth, T. Salter, R. H. Brown and Y. H. Yamazaki,
A laboratory model of of Saturn's North Polar Hexagon, Icarus, 206 (2010), 755-763.
doi: 10.1016/j.icarus.2009.10.022. |
[2] |
K. H. Baines, F. M. Flasar, N. Krupp and T. Stallard, Saturn in the 21st Century, Cambridge University Press, Cambridge, 2018.
doi: 10.1017/9781316227220.![]() |
[3] |
K. H. Baines, L. A. Sromovsky, P. M. Fry and et al.,
The eye of Saturn's North Polar Vortex: Unexpected cloud structures observed at high spatial resolution by Cassini/VIMS, Geophys. Res. Lett., 45 (2018), 5867-5875.
doi: 10.1029/2018GL078168. |
[4] |
R. Brown, J. P. Lebreton and J. Waite, Titan from Cassini-Huygens., Springer Netherlands, 2010,535 pp.
doi: 10.1007/978-1-4020-9215-2. |
[5] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates., Proc. A., 473 (2017), 20170063, 17 pp.
doi: 10.1098/rspa.2017.0063. |
[6] |
A. Constantin and V. S. Krishnamurthy,
Stuart-type vortices on a rotating sphere, J. Fluid Mech., 865 (2019), 1072-1084.
doi: 10.1017/jfm.2019.109. |
[7] |
D. G. Crowdy,
General solutions to the 2D Liouville equation, Internat. J. Engrg. Sci., 35 (1997), 141-149.
doi: 10.1016/S0020-7225(96)00080-8. |
[8] |
D. G. Crowdy,
Stuart vortices on a sphere, J. Fluid Mech., 398 (2004), 381-402.
doi: 10.1017/S0022112003007043. |
[9] |
M. K. Dougherty, L. W. Esposito and S. M. Krimigis, Saturn from Cassini-Huygens, Springer Netherlnds, 2009,805 pp.
doi: 10.1007/978-1-4020-9217-6. |
[10] |
P. L. Duren, Theory of $H^p$ Spaces., Academic Press, New York-London, 1970.
![]() |
[11] |
N. P. Fofonoff,
Steady flow in a frictionless homogeneous ocean, J. Marine Res., 13 (1954), 254-262.
|
[12] | A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982. Google Scholar |
[13] |
B. Haurwitz, The motion of atmospheric disturbances on a spherical Earth, J. Marine Res., 3 (1940), 254-267. Google Scholar |
[14] |
P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley & Sons, Inc., New York, 1986. |
[15] |
M. S. Longuet-Higgins,
Planetary waves on a rotating sphere Ⅱ, Proc. Roy. Soc. London Ser. A, 284 (1964), 40-68.
doi: 10.1098/rspa.1964.0116. |
[16] |
D. M. Mitchell, L. Montabone, S. Thomson and P. L. Read,
Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses, Quart. J. Roy. Meteorol. Soc., 141 (2015), 550-562.
doi: 10.1002/qj.2376. |
[17] |
K. Miyazaki and T. Iwasaki,
On the analysis of mean downward velocities around the Antarctic Polar Vortex, J. Atmospheric Sci., 65 (2008), 3989-4003.
doi: 10.1175/2008JAS2749.1. |
[18] |
R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Publishing Co., Amsterdam, 1985. |
[19] |
M. E. O'Neill, K. A. Emanuel and G. R. Flierl,
Weak jets and strong cyclones: Shallow-water modeling of giant planet polar caps, J. Atmospheric Sci., 73 (2016), 1841-1855.
doi: 10.1175/JAS-D-15-0314.1. |
[20] |
George Polya and Gordon Latta, Complex Variables, John Wiley & Sons, Inc., New York-London-Sydney, 1974. |
[21] |
A. C. Ponce, Elliptic PDEs, Measures and Capacities. From the Poisson Equations to Nonlinear Thomas-Fermi Problems, EMS Tracts in Mathematics, Vol. 23, European Math. Soc., Zürich, 2016.
doi: 10.4171/140. |
[22] |
R. K. Scott and D. G. Dritschel,
Downward wave propagation on the polar vortex, J. Atmospheric Sci., 62 (2005), 3382-3395.
doi: 10.1175/JAS3526.1. |
[23] |
J. T. Stuart,
On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29 (1967), 417-440.
doi: 10.1017/S0022112067000941. |
[24] | G. K. Vallis, Atmosphere and Ocean Fluid Dynamics, Cambridge University Press, Cambridge, 2006. Google Scholar |
[25] |
W. T. M. Verkley,
The construction of barotropic modons on a sphere, J. Atmospheric Sci., 41 (1984), 2492-2505.
doi: 10.1175/1520-0469(1984)041<2492:TCOBMO>2.0.CO;2. |
[26] |
T. von Larcher and P. D. Williams, Modeling Atmospheric and Oceanic Flows, Amer. Geophys. Union, 2015. Google Scholar |
[27] |
P. Wu and W. T. M Verkley, Nonlinear structures with multivalued ($q$, $\psi$) relationships–exact solutions of the barotropic vorticity equation on a sphere, Geophys. Astrophys. Fluid Dyn., 69 (1993), 77-94. Google Scholar |









[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[2] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[3] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[4] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[5] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[6] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[7] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[8] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[9] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[10] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[11] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[12] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[13] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[14] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[15] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[16] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[17] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[18] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[19] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[20] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]