January  2021, 41(1): 471-487. doi: 10.3934/dcds.2020264

A brief and personal history of stochastic partial differential equations

Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, Université de Paris, CNRS, 4, Place Jussieu, 75005 Paris, France

Received  December 2019 Published  July 2020

Fund Project: The author is supported by the grant ANR-15-CE40-0020 - LSD - Large Stochastic Dynamical Models in Non-Equilibrium Statistical Physics (2015)

We trace the evolution of the theory of stochastic partial differential equations from the foundation to its development, until the recent solution of long-standing problems on well-posedness of the KPZ equation and the stochastic quantization in dimension three.

Citation: Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264
References:
[1]

S. Albeverio and S. Kusuoka, The invariant measure and the flow associated to the $\Phi^4_3$-quantum field model, preprint, 2017, arXiv: 1711.07108. Google Scholar

[2]

S. Albeverio and R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40 (1977), 1-57.  doi: 10.1007/BF00535706.  Google Scholar

[3]

G. AmirI. Corwin and J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure Appl. Math., 64 (2011), 466-537.  doi: 10.1002/cpa.20347.  Google Scholar

[4]

M. BalázsJ. Quastel and T. Seppäläinen, Fluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc., 24 (2011), 683-708.  doi: 10.1090/S0894-0347-2011-00692-9.  Google Scholar

[5]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I, Israel J. Math., 11 (1972), 95-129.  doi: 10.1007/BF02761449.  Google Scholar

[6]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Functional Analysis, 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[7]

L. Bertini and N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Statist. Phys., 78 (1995), 1377-1401.  doi: 10.1007/BF02180136.  Google Scholar

[8]

L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys., 183 (1997), 571-607.  doi: 10.1007/s002200050044.  Google Scholar

[9]

J. BricmontA. Kupiainen and R. Lefevere, Ergodicity of the 2D Navier-Stokes equations with random forcing, Comm. Math. Phys., 224 (2001), 65-81.  doi: 10.1007/s002200100510.  Google Scholar

[10]

J. BricmontA. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys., 230 (2002), 87-132.  doi: 10.1007/s00220-002-0708-1.  Google Scholar

[11]

Y. Bruned, A. Chandra, I. Chevyrev and M. Hairer, Renormalising SPDEs in regularity structures, to appear in J. Eur. Math. Soc. (JEMS). Google Scholar

[12]

Y. BrunedM. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, Invent. Math., 215 (2019), 1039-1156.  doi: 10.1007/s00222-018-0841-x.  Google Scholar

[13]

E. Cabaña, The vibrating string forced by white noise, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 111-130.  doi: 10.1007/BF00531880.  Google Scholar

[14]

E. Cépa, Problème de Skorohod multivoque, Ann. Probab., 26 (1998), 500-532.  doi: 10.1214/aop/1022855642.  Google Scholar

[15]

S. Cerrai, Second Order PDE's in Finite and Infinite Dimension, Lecture Notes in Mathematics, Vol. 1762, Springer-Verlag, Berlin, 2001. doi: 10.1007/b80743.  Google Scholar

[16]

A. Chandra and M. Hairer, An analytic BPHZ theorem for Regularity Structures, preprint, 2016, arXiv: 1612.08138. Google Scholar

[17]

K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2), 65 (1957), 163-178.  doi: 10.2307/1969671.  Google Scholar

[18]

Y.-T. Chen, Pathwise nonuniqueness for the SPDEs of some super-Brownian motions with immigration, Ann. Probab., 43 (2015), 3359-3467.  doi: 10.1214/14-AOP962.  Google Scholar

[19]

Y. M. Chen, On scattering of waves by objects imbedded in random media: Stochastic linear partial differential equations and scattering of waves by conducting sphere imbedded in random media, J. Mathematical Phys., 5 (1964), 1541-1546.  doi: 10.1063/1.1931186.  Google Scholar

[20]

I. Corwin, Kardar-Parisi-Zhang universality, Notices Amer. Math. Soc., 63 (2016), 230-239.  doi: 10.1090/noti1334.  Google Scholar

[21]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829.  Google Scholar

[22]

G. Da Prato and A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31 (2003), 1900-1916.  doi: 10.1214/aop/1068646370.  Google Scholar

[23]

G. Da Prato, M. Iannelli and L. Tubaro, Stochastic differential equations in Banach spaces, variational formulation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 61 (1976), 168–176 (1977).  Google Scholar

[24]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[25]

G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511543210.  Google Scholar

[26]

R. C. DalangC. Mueller and L. Zambotti, Hitting properties of parabolic s.p.d.e.'s with reflection, Ann. Probab., 34 (2006), 1423-1450.  doi: 10.1214/009117905000000792.  Google Scholar

[27]

J. L. Daleckiĭ, Differential equations with functional derivatives and stochastic equations for generalized random processes, Dokl. Akad. Nauk SSSR, 166 (1966), 1035-1038.   Google Scholar

[28]

D. A. Dawson, Stochastic evolution equations, Math. Biosci., 15 (1972), 287-316.  doi: 10.1016/0025-5564(72)90039-9.  Google Scholar

[29]

D. A. Dawson, Measure-valued Markov processes, in École d'Été de Probabilités de Saint-Flour XXI-1991 doi: 10.1007/BFb0084190.  Google Scholar

[30]

D. A. Dawson and K. J. Hochberg, The carrying dimension of a stochastic measure diffusion, Ann. Probab., 7 (1979), 693–703. http://links.jstor.org/sici?sici=0091-1798(197908)7:4<693:TCDOAS>2.0.CO;2-E&origin=MSN. doi: 10.1214/aop/1176994991.  Google Scholar

[31]

H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), 13 (1977), 99-125.   Google Scholar

[32]

W. EJ. C. Mattingly and Y. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224 (2001), 83-106.  doi: 10.1007/s002201224083.  Google Scholar

[33]

K. D. Elworthy and X.-M. Li, Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125 (1994), 252-286.  doi: 10.1006/jfan.1994.1124.  Google Scholar

[34]

A. M. Etheridge and C. Labbé, Scaling limits of weakly asymmetric interfaces, Comm. Math. Phys., 336 (2015), 287-336.  doi: 10.1007/s00220-014-2243-2.  Google Scholar

[35]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[36]

F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., 172 (1995), 119–141. http://projecteuclid.org/euclid.cmp/1104273961 doi: 10.1007/BF02104513.  Google Scholar

[37]

H. Föllmer, Calcul d'Itô sans probabilités, in Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., Vol. 850, Springer, Berlin, 1981,143–150.  Google Scholar

[38]

P. K. Friz and M. Hairer, A Course on Rough Paths, Universitext, Springer, Cham, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[39]

M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland Mathematical Library, Vol. 23, North-Holland Mathematical Library, Vol. 23, North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo, 1980.  Google Scholar

[40]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, Vol. 19, Walter de Gruyter & Co., Berlin, 2011. Google Scholar

[41]

T. Funaki and S. Olla, Fluctuations for $\nabla\phi$ interface model on a wall, Stochastic Process. Appl., 94 (2001), 1-27.  doi: 10.1016/S0304-4149(00)00104-6.  Google Scholar

[42]

W. E. Gibson, An exact solution for a class of stochastic partial differential equations, SIAM J. Appl. Math., 15 (1967), 1357-1362.  doi: 10.1137/0115118.  Google Scholar

[43]

J. Glimm and A. Jaffe, Quantum Physics, 2nd edition, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4728-9.  Google Scholar

[44]

P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal., 212 (2014), 597-644.  doi: 10.1007/s00205-013-0693-x.  Google Scholar

[45]

L. Gross, Potential theory on Hilbert space, J. Functional Analysis, 1 (1967), 123-181.  doi: 10.1016/0022-1236(67)90030-4.  Google Scholar

[46]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[47]

M. Gubinelli and M. Jara, Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 325-350.  doi: 10.1007/s40072-013-0011-5.  Google Scholar

[48]

M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3 (2015), e6, 75 pp. doi: 10.1017/fmp.2015.2.  Google Scholar

[49]

M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique, J. Amer. Math. Soc., 31 (2018), 427-471.  doi: 10.1090/jams/889.  Google Scholar

[50]

M. Gubinelli and S. Tindel, Rough evolution equations, Ann. Probab., 38 (2010), 1-75.  doi: 10.1214/08-AOP437.  Google Scholar

[51]

M. Hairer, Rough stochastic PDEs, Comm. Pure Appl. Math., 64 (2011), 1547-1585.  doi: 10.1002/cpa.20383.  Google Scholar

[52]

M. Hairer, Solving the KPZ equation, Ann. of Math. (2), 178 (2013), 559-664.  doi: 10.4007/annals.2013.178.2.4.  Google Scholar

[53]

M. Hairer, A theory of regularity structures, Invent. Math., 198 (2014), 269-504.  doi: 10.1007/s00222-014-0505-4.  Google Scholar

[54]

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2), 164 (2006), 993-1032.  doi: 10.4007/annals.2006.164.993.  Google Scholar

[55]

G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys., 101 (1985), 409-436.  doi: 10.1007/BF01216097.  Google Scholar

[56]

M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growning interfaces, Phys. Rev. Lett., 56 (1986), 4 pp. doi: 10.1103/PhysRevLett.56.889.  Google Scholar

[57]

N. Konno and T. Shiga, Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Related Fields, 79 (1988), 201-225.  doi: 10.1007/BF00320919.  Google Scholar

[58]

N. V. Krylov, A $W^n_2$-theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Related Fields, 98 (1994), 389-421.  doi: 10.1007/BF01192260.  Google Scholar

[59]

N. V. Krylov and B. L. Rozovskiĭ, The Cauchy problem for linear stochastic partial differential equations, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1329–1347, 1448.  Google Scholar

[60]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys., 213 (2000), 291-330.  doi: 10.1007/s002200000237.  Google Scholar

[61]

S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier-Stokes equations, Math. Phys. Anal. Geom., 4 (2001), 147-195.  doi: 10.1023/A:1011989910997.  Google Scholar

[62]

A. Kupiainen, Renormalization group and stochastic PDEs, Ann. Henri Poincaré, 17 (2016), 497-535.  doi: 10.1007/s00023-015-0408-y.  Google Scholar

[63]

J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999. doi: 10.1007/978-3-0348-8683-3.  Google Scholar

[64]

R. H. Lyon, Response of a nonlinear string to random excitation, J. Acoust. Soc. Amer., 32 (1960), 953-960.  doi: 10.1121/1.1908341.  Google Scholar

[65]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[66]

Z. M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-77739-4.  Google Scholar

[67]

J. C. Mattingly, Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Comm. Math. Phys., 206 (1999), 273–288. doi: 10.1007/s002200050706.  Google Scholar

[68]

G. Miermont, Aspects of random maps, Saint-Flour Lecture notes, 2014. http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf Google Scholar

[69]

J.-C. Mourrat and H. Weber, Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi^4_2$, Comm. Pure Appl. Math., 70 (2017), 717-812.  doi: 10.1002/cpa.21655.  Google Scholar

[70]

C. Mueller, On the support of solutions to the heat equation with noise, Stochastics Stochastics Rep., 37 (1991), 225-245.  doi: 10.1080/17442509108833738.  Google Scholar

[71]

C. MuellerL. Mytnik and E. Perkins, Nonuniqueness for a parabolic SPDE with $\frac{3}{4}-\epsilon$-Hölder diffusion coefficients, Ann. Probab., 42 (2014), 2032-2112.  doi: 10.1214/13-AOP870.  Google Scholar

[72]

C. MuellerL. Mytnik and J. Quastel, Effect of noise on front propagation in reaction-diffusion equations of KPP type, Invent. Math., 184 (2011), 405-453.  doi: 10.1007/s00222-010-0292-5.  Google Scholar

[73]

L. Mytnik, Superprocesses in random environments, Ann. Probab., 24 (1996), 1953-1978.  doi: 10.1214/aop/1041903212.  Google Scholar

[74]

L. Mytnik and E. Perkins, Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: The white noise case, Probab. Theory Related Fields, 149 (2011), 1-96.  doi: 10.1007/s00440-009-0241-7.  Google Scholar

[75]

D. Nualart and É. Pardoux, White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields, 93 (1992), 77-89.  doi: 10.1007/BF01195389.  Google Scholar

[76]

D. Nualart, The Malliavin Calculus and Related Topics, 2nd edition, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.  Google Scholar

[77]

E. Pardoux, Sur des équations aux dérivées partielles stochastiques monotones, C. R. Acad. Sci. Paris Sér. A-B, 275 (1972), A101–A103.  Google Scholar

[78]

G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica, 24 (1981), 483-496.   Google Scholar

[79]

E. Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions, in Lectures on Probability Theory and Statistics (Saint-Flour, 1999), Lecture Notes in Math., Vol. 1781, Springer, Berlin, 2002,125–324.  Google Scholar

[80]

J. Quastel, Introduction to KPZ, in Current Developments in Mathematics, 2011  Google Scholar

[81]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Vol. 293, 3rd edition, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-06400-9.  Google Scholar

[82]

B. L. Rozovskiĭ, Stochastic differential equations in infinite-dimensional spaces, and filtering problems, in Proceedings of the School and Seminar on the Theory of Random Processes (Druskininkai, 1974), Part Ⅱ (Russian), 1975,147–194.  Google Scholar

[83]

B. L. Rozovskiĭ, Stochastic partial differential equations, Mat. Sb. (N.S.), 96(138) (1975), 314–341,344.  Google Scholar

[84]

T. Shiga, Diffusion processes in population genetics, J. Math. Kyoto Univ., 21 (1981), 133-151.  doi: 10.1215/kjm/1250522109.  Google Scholar

[85]

T. Shiga, Existence and uniqueness of solutions for a class of nonlinear diffusion equations, J. Math. Kyoto Univ., 27 (1987), 195-215.  doi: 10.1215/kjm/1250520714.  Google Scholar

[86] B. Simon, The $P(\phi)_{2}$ Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, N.J., 1974.   Google Scholar
[87]

M. R. Spiegel, The random vibrations of a string, Quart. Appl. Math., 10 (1952), 25-33.  doi: 10.1090/qam/45976.  Google Scholar

[88]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Classics in Mathematics, Springer-Verlag, Berlin, 2006.  Google Scholar

[89]

H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probability, 6 (1978), 19-41.  doi: 10.1214/aop/1176995608.  Google Scholar

[90]

J. B. Walsh, An introduction to stochastic partial differential equations, in École d'Été de Probabilités de Saint-Flour, XIV-1984, Lecture Notes in Math., Vol. 1180, Springer, Berlin, 1986,265–439. doi: 10.1007/BFb0074920.  Google Scholar

[91]

S. Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 8 (1968), 141-167.  doi: 10.1215/kjm/1250524180.  Google Scholar

[92]

M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 230-243.  doi: 10.1007/BF00536382.  Google Scholar

[93]

L. Zambotti, A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge, J. Funct. Anal., 180 (2001), 195-209.  doi: 10.1006/jfan.2000.3685.  Google Scholar

[94]

L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 (2002), 579-600.  doi: 10.1007/s004400200203.  Google Scholar

[95]

L. Zambotti, Occupation densities for SPDEs with reflection, Ann. Probab., 32 (2004), 191-215.  doi: 10.1214/aop/1078415833.  Google Scholar

[96]

L. Zambotti, Random Obstacle Problems, Lecture Notes in Mathematics, Vol. 2181, Springer, Cham, 2017. doi: 10.1007/978-3-319-52096-4.  Google Scholar

show all references

References:
[1]

S. Albeverio and S. Kusuoka, The invariant measure and the flow associated to the $\Phi^4_3$-quantum field model, preprint, 2017, arXiv: 1711.07108. Google Scholar

[2]

S. Albeverio and R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40 (1977), 1-57.  doi: 10.1007/BF00535706.  Google Scholar

[3]

G. AmirI. Corwin and J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure Appl. Math., 64 (2011), 466-537.  doi: 10.1002/cpa.20347.  Google Scholar

[4]

M. BalázsJ. Quastel and T. Seppäläinen, Fluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc., 24 (2011), 683-708.  doi: 10.1090/S0894-0347-2011-00692-9.  Google Scholar

[5]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I, Israel J. Math., 11 (1972), 95-129.  doi: 10.1007/BF02761449.  Google Scholar

[6]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Functional Analysis, 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[7]

L. Bertini and N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Statist. Phys., 78 (1995), 1377-1401.  doi: 10.1007/BF02180136.  Google Scholar

[8]

L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys., 183 (1997), 571-607.  doi: 10.1007/s002200050044.  Google Scholar

[9]

J. BricmontA. Kupiainen and R. Lefevere, Ergodicity of the 2D Navier-Stokes equations with random forcing, Comm. Math. Phys., 224 (2001), 65-81.  doi: 10.1007/s002200100510.  Google Scholar

[10]

J. BricmontA. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys., 230 (2002), 87-132.  doi: 10.1007/s00220-002-0708-1.  Google Scholar

[11]

Y. Bruned, A. Chandra, I. Chevyrev and M. Hairer, Renormalising SPDEs in regularity structures, to appear in J. Eur. Math. Soc. (JEMS). Google Scholar

[12]

Y. BrunedM. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, Invent. Math., 215 (2019), 1039-1156.  doi: 10.1007/s00222-018-0841-x.  Google Scholar

[13]

E. Cabaña, The vibrating string forced by white noise, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 111-130.  doi: 10.1007/BF00531880.  Google Scholar

[14]

E. Cépa, Problème de Skorohod multivoque, Ann. Probab., 26 (1998), 500-532.  doi: 10.1214/aop/1022855642.  Google Scholar

[15]

S. Cerrai, Second Order PDE's in Finite and Infinite Dimension, Lecture Notes in Mathematics, Vol. 1762, Springer-Verlag, Berlin, 2001. doi: 10.1007/b80743.  Google Scholar

[16]

A. Chandra and M. Hairer, An analytic BPHZ theorem for Regularity Structures, preprint, 2016, arXiv: 1612.08138. Google Scholar

[17]

K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2), 65 (1957), 163-178.  doi: 10.2307/1969671.  Google Scholar

[18]

Y.-T. Chen, Pathwise nonuniqueness for the SPDEs of some super-Brownian motions with immigration, Ann. Probab., 43 (2015), 3359-3467.  doi: 10.1214/14-AOP962.  Google Scholar

[19]

Y. M. Chen, On scattering of waves by objects imbedded in random media: Stochastic linear partial differential equations and scattering of waves by conducting sphere imbedded in random media, J. Mathematical Phys., 5 (1964), 1541-1546.  doi: 10.1063/1.1931186.  Google Scholar

[20]

I. Corwin, Kardar-Parisi-Zhang universality, Notices Amer. Math. Soc., 63 (2016), 230-239.  doi: 10.1090/noti1334.  Google Scholar

[21]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829.  Google Scholar

[22]

G. Da Prato and A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31 (2003), 1900-1916.  doi: 10.1214/aop/1068646370.  Google Scholar

[23]

G. Da Prato, M. Iannelli and L. Tubaro, Stochastic differential equations in Banach spaces, variational formulation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 61 (1976), 168–176 (1977).  Google Scholar

[24]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[25]

G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511543210.  Google Scholar

[26]

R. C. DalangC. Mueller and L. Zambotti, Hitting properties of parabolic s.p.d.e.'s with reflection, Ann. Probab., 34 (2006), 1423-1450.  doi: 10.1214/009117905000000792.  Google Scholar

[27]

J. L. Daleckiĭ, Differential equations with functional derivatives and stochastic equations for generalized random processes, Dokl. Akad. Nauk SSSR, 166 (1966), 1035-1038.   Google Scholar

[28]

D. A. Dawson, Stochastic evolution equations, Math. Biosci., 15 (1972), 287-316.  doi: 10.1016/0025-5564(72)90039-9.  Google Scholar

[29]

D. A. Dawson, Measure-valued Markov processes, in École d'Été de Probabilités de Saint-Flour XXI-1991 doi: 10.1007/BFb0084190.  Google Scholar

[30]

D. A. Dawson and K. J. Hochberg, The carrying dimension of a stochastic measure diffusion, Ann. Probab., 7 (1979), 693–703. http://links.jstor.org/sici?sici=0091-1798(197908)7:4<693:TCDOAS>2.0.CO;2-E&origin=MSN. doi: 10.1214/aop/1176994991.  Google Scholar

[31]

H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), 13 (1977), 99-125.   Google Scholar

[32]

W. EJ. C. Mattingly and Y. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224 (2001), 83-106.  doi: 10.1007/s002201224083.  Google Scholar

[33]

K. D. Elworthy and X.-M. Li, Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125 (1994), 252-286.  doi: 10.1006/jfan.1994.1124.  Google Scholar

[34]

A. M. Etheridge and C. Labbé, Scaling limits of weakly asymmetric interfaces, Comm. Math. Phys., 336 (2015), 287-336.  doi: 10.1007/s00220-014-2243-2.  Google Scholar

[35]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[36]

F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., 172 (1995), 119–141. http://projecteuclid.org/euclid.cmp/1104273961 doi: 10.1007/BF02104513.  Google Scholar

[37]

H. Föllmer, Calcul d'Itô sans probabilités, in Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., Vol. 850, Springer, Berlin, 1981,143–150.  Google Scholar

[38]

P. K. Friz and M. Hairer, A Course on Rough Paths, Universitext, Springer, Cham, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[39]

M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland Mathematical Library, Vol. 23, North-Holland Mathematical Library, Vol. 23, North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo, 1980.  Google Scholar

[40]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, Vol. 19, Walter de Gruyter & Co., Berlin, 2011. Google Scholar

[41]

T. Funaki and S. Olla, Fluctuations for $\nabla\phi$ interface model on a wall, Stochastic Process. Appl., 94 (2001), 1-27.  doi: 10.1016/S0304-4149(00)00104-6.  Google Scholar

[42]

W. E. Gibson, An exact solution for a class of stochastic partial differential equations, SIAM J. Appl. Math., 15 (1967), 1357-1362.  doi: 10.1137/0115118.  Google Scholar

[43]

J. Glimm and A. Jaffe, Quantum Physics, 2nd edition, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4728-9.  Google Scholar

[44]

P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal., 212 (2014), 597-644.  doi: 10.1007/s00205-013-0693-x.  Google Scholar

[45]

L. Gross, Potential theory on Hilbert space, J. Functional Analysis, 1 (1967), 123-181.  doi: 10.1016/0022-1236(67)90030-4.  Google Scholar

[46]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[47]

M. Gubinelli and M. Jara, Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 325-350.  doi: 10.1007/s40072-013-0011-5.  Google Scholar

[48]

M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3 (2015), e6, 75 pp. doi: 10.1017/fmp.2015.2.  Google Scholar

[49]

M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique, J. Amer. Math. Soc., 31 (2018), 427-471.  doi: 10.1090/jams/889.  Google Scholar

[50]

M. Gubinelli and S. Tindel, Rough evolution equations, Ann. Probab., 38 (2010), 1-75.  doi: 10.1214/08-AOP437.  Google Scholar

[51]

M. Hairer, Rough stochastic PDEs, Comm. Pure Appl. Math., 64 (2011), 1547-1585.  doi: 10.1002/cpa.20383.  Google Scholar

[52]

M. Hairer, Solving the KPZ equation, Ann. of Math. (2), 178 (2013), 559-664.  doi: 10.4007/annals.2013.178.2.4.  Google Scholar

[53]

M. Hairer, A theory of regularity structures, Invent. Math., 198 (2014), 269-504.  doi: 10.1007/s00222-014-0505-4.  Google Scholar

[54]

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2), 164 (2006), 993-1032.  doi: 10.4007/annals.2006.164.993.  Google Scholar

[55]

G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys., 101 (1985), 409-436.  doi: 10.1007/BF01216097.  Google Scholar

[56]

M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growning interfaces, Phys. Rev. Lett., 56 (1986), 4 pp. doi: 10.1103/PhysRevLett.56.889.  Google Scholar

[57]

N. Konno and T. Shiga, Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Related Fields, 79 (1988), 201-225.  doi: 10.1007/BF00320919.  Google Scholar

[58]

N. V. Krylov, A $W^n_2$-theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Related Fields, 98 (1994), 389-421.  doi: 10.1007/BF01192260.  Google Scholar

[59]

N. V. Krylov and B. L. Rozovskiĭ, The Cauchy problem for linear stochastic partial differential equations, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1329–1347, 1448.  Google Scholar

[60]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys., 213 (2000), 291-330.  doi: 10.1007/s002200000237.  Google Scholar

[61]

S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier-Stokes equations, Math. Phys. Anal. Geom., 4 (2001), 147-195.  doi: 10.1023/A:1011989910997.  Google Scholar

[62]

A. Kupiainen, Renormalization group and stochastic PDEs, Ann. Henri Poincaré, 17 (2016), 497-535.  doi: 10.1007/s00023-015-0408-y.  Google Scholar

[63]

J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999. doi: 10.1007/978-3-0348-8683-3.  Google Scholar

[64]

R. H. Lyon, Response of a nonlinear string to random excitation, J. Acoust. Soc. Amer., 32 (1960), 953-960.  doi: 10.1121/1.1908341.  Google Scholar

[65]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[66]

Z. M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-77739-4.  Google Scholar

[67]

J. C. Mattingly, Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Comm. Math. Phys., 206 (1999), 273–288. doi: 10.1007/s002200050706.  Google Scholar

[68]

G. Miermont, Aspects of random maps, Saint-Flour Lecture notes, 2014. http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf Google Scholar

[69]

J.-C. Mourrat and H. Weber, Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi^4_2$, Comm. Pure Appl. Math., 70 (2017), 717-812.  doi: 10.1002/cpa.21655.  Google Scholar

[70]

C. Mueller, On the support of solutions to the heat equation with noise, Stochastics Stochastics Rep., 37 (1991), 225-245.  doi: 10.1080/17442509108833738.  Google Scholar

[71]

C. MuellerL. Mytnik and E. Perkins, Nonuniqueness for a parabolic SPDE with $\frac{3}{4}-\epsilon$-Hölder diffusion coefficients, Ann. Probab., 42 (2014), 2032-2112.  doi: 10.1214/13-AOP870.  Google Scholar

[72]

C. MuellerL. Mytnik and J. Quastel, Effect of noise on front propagation in reaction-diffusion equations of KPP type, Invent. Math., 184 (2011), 405-453.  doi: 10.1007/s00222-010-0292-5.  Google Scholar

[73]

L. Mytnik, Superprocesses in random environments, Ann. Probab., 24 (1996), 1953-1978.  doi: 10.1214/aop/1041903212.  Google Scholar

[74]

L. Mytnik and E. Perkins, Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: The white noise case, Probab. Theory Related Fields, 149 (2011), 1-96.  doi: 10.1007/s00440-009-0241-7.  Google Scholar

[75]

D. Nualart and É. Pardoux, White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields, 93 (1992), 77-89.  doi: 10.1007/BF01195389.  Google Scholar

[76]

D. Nualart, The Malliavin Calculus and Related Topics, 2nd edition, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.  Google Scholar

[77]

E. Pardoux, Sur des équations aux dérivées partielles stochastiques monotones, C. R. Acad. Sci. Paris Sér. A-B, 275 (1972), A101–A103.  Google Scholar

[78]

G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica, 24 (1981), 483-496.   Google Scholar

[79]

E. Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions, in Lectures on Probability Theory and Statistics (Saint-Flour, 1999), Lecture Notes in Math., Vol. 1781, Springer, Berlin, 2002,125–324.  Google Scholar

[80]

J. Quastel, Introduction to KPZ, in Current Developments in Mathematics, 2011  Google Scholar

[81]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Vol. 293, 3rd edition, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-06400-9.  Google Scholar

[82]

B. L. Rozovskiĭ, Stochastic differential equations in infinite-dimensional spaces, and filtering problems, in Proceedings of the School and Seminar on the Theory of Random Processes (Druskininkai, 1974), Part Ⅱ (Russian), 1975,147–194.  Google Scholar

[83]

B. L. Rozovskiĭ, Stochastic partial differential equations, Mat. Sb. (N.S.), 96(138) (1975), 314–341,344.  Google Scholar

[84]

T. Shiga, Diffusion processes in population genetics, J. Math. Kyoto Univ., 21 (1981), 133-151.  doi: 10.1215/kjm/1250522109.  Google Scholar

[85]

T. Shiga, Existence and uniqueness of solutions for a class of nonlinear diffusion equations, J. Math. Kyoto Univ., 27 (1987), 195-215.  doi: 10.1215/kjm/1250520714.  Google Scholar

[86] B. Simon, The $P(\phi)_{2}$ Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, N.J., 1974.   Google Scholar
[87]

M. R. Spiegel, The random vibrations of a string, Quart. Appl. Math., 10 (1952), 25-33.  doi: 10.1090/qam/45976.  Google Scholar

[88]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Classics in Mathematics, Springer-Verlag, Berlin, 2006.  Google Scholar

[89]

H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probability, 6 (1978), 19-41.  doi: 10.1214/aop/1176995608.  Google Scholar

[90]

J. B. Walsh, An introduction to stochastic partial differential equations, in École d'Été de Probabilités de Saint-Flour, XIV-1984, Lecture Notes in Math., Vol. 1180, Springer, Berlin, 1986,265–439. doi: 10.1007/BFb0074920.  Google Scholar

[91]

S. Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 8 (1968), 141-167.  doi: 10.1215/kjm/1250524180.  Google Scholar

[92]

M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 230-243.  doi: 10.1007/BF00536382.  Google Scholar

[93]

L. Zambotti, A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge, J. Funct. Anal., 180 (2001), 195-209.  doi: 10.1006/jfan.2000.3685.  Google Scholar

[94]

L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 (2002), 579-600.  doi: 10.1007/s004400200203.  Google Scholar

[95]

L. Zambotti, Occupation densities for SPDEs with reflection, Ann. Probab., 32 (2004), 191-215.  doi: 10.1214/aop/1078415833.  Google Scholar

[96]

L. Zambotti, Random Obstacle Problems, Lecture Notes in Mathematics, Vol. 2181, Springer, Cham, 2017. doi: 10.1007/978-3-319-52096-4.  Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (215)
  • Cited by (0)

Other articles
by authors

[Back to Top]