• Previous Article
    Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction
  • DCDS Home
  • This Issue
  • Next Article
    $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization
doi: 10.3934/dcds.2020266

The unique measure of maximal entropy for a compact rank one locally CAT(0) space

Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902, USA

Received  October 2019 Revised  April 2020 Published  July 2020

Fund Project: The author would like to thank three anonymous referees, who all made helpful suggestions to improve the paper. The author was partially supported by NSF RTG 1045119

Let $ X $ be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank one axis. We prove the Bowen-Margulis measure on the space of geodesics is the unique measure of maximal entropy for the geodesic flow, which has topological entropy equal to the critical exponent of the Poincaré series.

Citation: Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020266
References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[4]

R. Engelking, Theory of Dimensions Finite and Infinite, vol. 10 of Sigma Series in Pure Mathematics, Heldermann Verlag, Lemgo, 1995.  Google Scholar

[5]

B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.  doi: 10.1007/PL00004738.  Google Scholar

[6]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2), 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[7]

A. Lytchak and K. Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal., 29 (2019), 295-342.  doi: 10.1007/s00039-019-00483-7.  Google Scholar

[8]

A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2), 110 (1979), 567-573.  doi: 10.2307/1971239.  Google Scholar

[9]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one $ {\rm{CAT}} $(0) spaces, Ergodic Theory Dynam. Systems, 37 (2017), 939-970.  doi: 10.1017/etds.2015.78.  Google Scholar

[10]

E. L. Swenson, A cut point theorem for $ {\rm{CAT}} $(0) groups, J. Differential Geom., 53 (1999), 327-358.  doi: 10.4310/jdg/1214425538.  Google Scholar

[11]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.  Google Scholar

show all references

References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[4]

R. Engelking, Theory of Dimensions Finite and Infinite, vol. 10 of Sigma Series in Pure Mathematics, Heldermann Verlag, Lemgo, 1995.  Google Scholar

[5]

B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.  doi: 10.1007/PL00004738.  Google Scholar

[6]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2), 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[7]

A. Lytchak and K. Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal., 29 (2019), 295-342.  doi: 10.1007/s00039-019-00483-7.  Google Scholar

[8]

A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2), 110 (1979), 567-573.  doi: 10.2307/1971239.  Google Scholar

[9]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one $ {\rm{CAT}} $(0) spaces, Ergodic Theory Dynam. Systems, 37 (2017), 939-970.  doi: 10.1017/etds.2015.78.  Google Scholar

[10]

E. L. Swenson, A cut point theorem for $ {\rm{CAT}} $(0) groups, J. Differential Geom., 53 (1999), 327-358.  doi: 10.4310/jdg/1214425538.  Google Scholar

[11]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.  Google Scholar

Figure 1.  Shadows of $ p $ on $ \partial X $, from basepoints $ x \in X $ (left) and $ \xi \in \partial X $ (right)
[1]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[2]

Daniel T. Wise. Nonpositive immersions, sectional curvature, and subgroup properties. Electronic Research Announcements, 2003, 9: 1-9.

[3]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[4]

David Constantine. 2-Frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature. Journal of Modern Dynamics, 2008, 2 (4) : 719-740. doi: 10.3934/jmd.2008.2.719

[5]

Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875

[6]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[7]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[8]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[9]

Mark Pollicott. Closed geodesic distribution for manifolds of non-positive curvature. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 153-161. doi: 10.3934/dcds.1996.2.153

[10]

Weimin Sheng, Caihong Yi. A class of anisotropic expanding curvature flows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2017-2035. doi: 10.3934/dcds.2020104

[11]

Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645

[12]

Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403

[13]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[14]

Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022

[15]

Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61

[16]

Ítalo Melo, Sergio Romaña. Contributions to the study of Anosov geodesic flows in non-compact manifolds. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5149-5171. doi: 10.3934/dcds.2020223

[17]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[18]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[19]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[20]

Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]