-
Previous Article
Local rigidity of certain solvable group actions on tori
- DCDS Home
- This Issue
-
Next Article
Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation
Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains
1. | School of Mathematical Sciences, Nankai University, Tianjin 300071, China |
2. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
$ \Omega $ |
$ \begin{equation*} \left\{\begin{array}{r@{\ \ }c@{\ \ }ll} \left(-\Delta\right)^{s}u& = &f(u,v), & \mbox{in}\ \ \Omega\,, \\[0.05cm] \left(-\Delta\right)^{t}v& = &g(u,v),& \mbox{in}\ \ \Omega\,, \\[0.05cm] u,\,v&\equiv&0, & \mbox{on}\ \ \mathbb{R}^{n}\setminus\Omega\,, \end{array}\right. \end{equation*} $ |
$ (u,\,v) $ |
References:
[1] |
G. Alberti and G. Bellettini,
A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560.
doi: 10.1007/s002080050159. |
[2] |
D. Applebaum,
Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[3] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42. |
[4] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Inequalities for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.
doi: 10.1215/S0012-7094-96-08117-X. |
[5] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:113.0.CO;2-6. |
[6] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.
|
[7] |
J. Bouchaud and A. Georges,
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[8] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
L. Caffarelli and A. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[10] |
W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domain, J. Funct. Anal., (2019). Google Scholar |
[11] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[12] |
W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co., 2019. Google Scholar |
[13] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[14] |
Z. Chen, C. Lin and W. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[15] |
T. Cheng,
Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.
doi: 10.3934/dcds.2017154. |
[16] |
E. N. Dancer,
Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.
doi: 10.1007/s00208-008-0226-3. |
[17] |
S. Dipierro, N. Soave and E. Valdinoci,
On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.
doi: 10.1007/s00208-016-1487-x. |
[18] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[19] |
C. Li and Z. Wu,
Radial symmetry for systems of fractional Laplacian, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1567-1582.
doi: 10.1016/S0252-9602(18)30832-4. |
[20] |
L. Ma and Z. Zhang,
Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.
doi: 10.1016/j.na.2018.12.015. |
[21] |
A. Quaas and A. Xia,
Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.
doi: 10.1007/s00526-014-0727-8. |
show all references
References:
[1] |
G. Alberti and G. Bellettini,
A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560.
doi: 10.1007/s002080050159. |
[2] |
D. Applebaum,
Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[3] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42. |
[4] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Inequalities for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.
doi: 10.1215/S0012-7094-96-08117-X. |
[5] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:113.0.CO;2-6. |
[6] |
H. Berestycki, L. Caffarelli and L. Nirenberg,
Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.
|
[7] |
J. Bouchaud and A. Georges,
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[8] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[9] |
L. Caffarelli and A. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[10] |
W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domain, J. Funct. Anal., (2019). Google Scholar |
[11] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[12] |
W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co., 2019. Google Scholar |
[13] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[14] |
Z. Chen, C. Lin and W. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[15] |
T. Cheng,
Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.
doi: 10.3934/dcds.2017154. |
[16] |
E. N. Dancer,
Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.
doi: 10.1007/s00208-008-0226-3. |
[17] |
S. Dipierro, N. Soave and E. Valdinoci,
On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.
doi: 10.1007/s00208-016-1487-x. |
[18] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[19] |
C. Li and Z. Wu,
Radial symmetry for systems of fractional Laplacian, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1567-1582.
doi: 10.1016/S0252-9602(18)30832-4. |
[20] |
L. Ma and Z. Zhang,
Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.
doi: 10.1016/j.na.2018.12.015. |
[21] |
A. Quaas and A. Xia,
Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.
doi: 10.1007/s00526-014-0727-8. |
[1] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[2] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[3] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[4] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[5] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[6] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[7] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[8] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[9] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[10] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[11] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[12] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[13] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[14] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[15] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[16] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[17] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[18] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[19] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[20] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]