February  2021, 41(2): 537-552. doi: 10.3934/dcds.2020268

Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Zhenqiu Zhang

Received  December 2019 Revised  May 2020 Published  July 2020

In this paper, we first establish a narrow region principle for systems involving the fractional Laplacian in unbounded domains, which plays an important role in carrying on the direct method of moving planes. Then combining this direct method with the sliding method, we derive the monotonicity of bounded positive solutions to the following fractional Laplacian systems in unbounded Lipschitz domains
$ \Omega $
$ \begin{equation*} \left\{\begin{array}{r@{\ \ }c@{\ \ }ll} \left(-\Delta\right)^{s}u& = &f(u,v), & \mbox{in}\ \ \Omega\,, \\[0.05cm] \left(-\Delta\right)^{t}v& = &g(u,v),& \mbox{in}\ \ \Omega\,, \\[0.05cm] u,\,v&\equiv&0, & \mbox{on}\ \ \mathbb{R}^{n}\setminus\Omega\,, \end{array}\right. \end{equation*} $
without any decay assumptions on the solution pair
$ (u,\,v) $
at infinity.
Citation: Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268
References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560.  doi: 10.1007/s002080050159.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42.  Google Scholar

[4]

H. BerestyckiL. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[5]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:113.0.CO;2-6.  Google Scholar

[6]

H. BerestyckiL. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.   Google Scholar

[7]

J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[10]

W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domain, J. Funct. Anal., (2019). Google Scholar

[11]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[12]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co., 2019. Google Scholar

[13]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[14]

Z. ChenC. Lin and W. Zou, Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.  doi: 10.1016/j.jfa.2013.08.021.  Google Scholar

[15]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.  Google Scholar

[16]

E. N. Dancer, Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.  doi: 10.1007/s00208-008-0226-3.  Google Scholar

[17]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[18]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.  doi: 10.1137/070698592.  Google Scholar

[19]

C. Li and Z. Wu, Radial symmetry for systems of fractional Laplacian, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1567-1582.  doi: 10.1016/S0252-9602(18)30832-4.  Google Scholar

[20]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.  doi: 10.1016/j.na.2018.12.015.  Google Scholar

[21]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

show all references

References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560.  doi: 10.1007/s002080050159.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42.  Google Scholar

[4]

H. BerestyckiL. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[5]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:113.0.CO;2-6.  Google Scholar

[6]

H. BerestyckiL. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.   Google Scholar

[7]

J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[10]

W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domain, J. Funct. Anal., (2019). Google Scholar

[11]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[12]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co., 2019. Google Scholar

[13]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[14]

Z. ChenC. Lin and W. Zou, Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.  doi: 10.1016/j.jfa.2013.08.021.  Google Scholar

[15]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.  Google Scholar

[16]

E. N. Dancer, Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.  doi: 10.1007/s00208-008-0226-3.  Google Scholar

[17]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[18]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.  doi: 10.1137/070698592.  Google Scholar

[19]

C. Li and Z. Wu, Radial symmetry for systems of fractional Laplacian, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1567-1582.  doi: 10.1016/S0252-9602(18)30832-4.  Google Scholar

[20]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.  doi: 10.1016/j.na.2018.12.015.  Google Scholar

[21]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[1]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[5]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[6]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[7]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[8]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[15]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[16]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[17]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[18]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[19]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (119)
  • HTML views (294)
  • Cited by (0)

Other articles
by authors

[Back to Top]