February  2021, 41(2): 553-567. doi: 10.3934/dcds.2020269

Local rigidity of certain solvable group actions on tori

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Received  January 2020 Revised  June 2020 Published  July 2020

In this paper, we study a local rigidity property of $ \mathbb Z \ltimes_\lambda \mathbb R $ affine action on tori generated by an irreducible toral automorphism and a linear flow along an eigenspace. Such an action exhibits a weak version of local rigidity, i.e., any smooth perturbations close enough to an affine action is smoothly conjugate to the affine action up to constant time change.

Citation: Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269
References:
[1]

M. Asaoka, Rigidity of certain solvable actions on the sphere, Geometry & Topology, 16 (2012), 1835-1857.   Google Scholar

[2]

M. Asaoka, Rigidity of certain solvable actions on the torus, Geometry, Dynamics, and Foliations 2013, 269-281, Adv. Stud. Pure Math., 72, Math. Soc. Japan, Tokyo, 2017. doi: 10.2969/aspm/07210269.  Google Scholar

[3]

L. Burslem and A. Wilkinson, Global rigidity of solvable group actions on $S^1$, Geometry & Topology, 8 (2004), 877-924.  doi: 10.2140/gt.2004.8.877.  Google Scholar

[4]

J. L. Dias, local conjugacy classes for analytic torus flows, Journal of Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.  Google Scholar

[5]

R. De la Llave, A tutorial on KAM theory, Proceedings of Symposia in Pure Mathematics, 69 (2001), 175-292.  doi: 10.1090/pspum/069/1858536.  Google Scholar

[6]

R. De la Llave, Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Communications in Mathematical Physics, 150 (1992), 289-320.  doi: 10.1007/BF02096662.  Google Scholar

[7]

R. De la LlaveJ. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livisic cohomology equation, Annals of Mathematics, 123 (1986), 537-611.  doi: 10.2307/1971334.  Google Scholar

[8]

A. Gogolev, B. Kalinin and V. Sadovskaya, Local rigidity of Lyapunov spectrum for toral automorphisms, preprint, arXiv: 1808.06249. Google Scholar

[9]

R. S. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of American Mathematical Society, 7 (1982), 65-122. doi: 10.1090/S0273-0979-1982-15004-2.  Google Scholar

[10]

N. Karaliolios, Local rigidity of diophantine translations in higher-dimensional tori, Regular and Chaotic Dynamics, 23 (2018), 12-25. doi: 10.1134/S1560354718010021.  Google Scholar

[11]

Y. Katzenlson, Ergodic automorphism of $\mathbb T^n$ are bernoulli shifts, Israel Journal of Mathematics, 10 (1971), 186-195. doi: 10.1007/BF02771569.  Google Scholar

[12]

R. Saghin and J. Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advance in Mathematics, 355 (2019), 106764, 45 pp. doi: 10.1016/j.aim.2019.106764.  Google Scholar

[13]

A. Wilkinson and J. Xue, Rigidity of some abelian-by-cyclic solvable group actions on $\mathbb T^N$, Communications in Mathematical Physics, 376 (2020), 1223-1259. doi: 10.1007/s00220-019-03658-3.  Google Scholar

show all references

References:
[1]

M. Asaoka, Rigidity of certain solvable actions on the sphere, Geometry & Topology, 16 (2012), 1835-1857.   Google Scholar

[2]

M. Asaoka, Rigidity of certain solvable actions on the torus, Geometry, Dynamics, and Foliations 2013, 269-281, Adv. Stud. Pure Math., 72, Math. Soc. Japan, Tokyo, 2017. doi: 10.2969/aspm/07210269.  Google Scholar

[3]

L. Burslem and A. Wilkinson, Global rigidity of solvable group actions on $S^1$, Geometry & Topology, 8 (2004), 877-924.  doi: 10.2140/gt.2004.8.877.  Google Scholar

[4]

J. L. Dias, local conjugacy classes for analytic torus flows, Journal of Differential Equations, 245 (2008), 468-489.  doi: 10.1016/j.jde.2008.04.006.  Google Scholar

[5]

R. De la Llave, A tutorial on KAM theory, Proceedings of Symposia in Pure Mathematics, 69 (2001), 175-292.  doi: 10.1090/pspum/069/1858536.  Google Scholar

[6]

R. De la Llave, Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Communications in Mathematical Physics, 150 (1992), 289-320.  doi: 10.1007/BF02096662.  Google Scholar

[7]

R. De la LlaveJ. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livisic cohomology equation, Annals of Mathematics, 123 (1986), 537-611.  doi: 10.2307/1971334.  Google Scholar

[8]

A. Gogolev, B. Kalinin and V. Sadovskaya, Local rigidity of Lyapunov spectrum for toral automorphisms, preprint, arXiv: 1808.06249. Google Scholar

[9]

R. S. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of American Mathematical Society, 7 (1982), 65-122. doi: 10.1090/S0273-0979-1982-15004-2.  Google Scholar

[10]

N. Karaliolios, Local rigidity of diophantine translations in higher-dimensional tori, Regular and Chaotic Dynamics, 23 (2018), 12-25. doi: 10.1134/S1560354718010021.  Google Scholar

[11]

Y. Katzenlson, Ergodic automorphism of $\mathbb T^n$ are bernoulli shifts, Israel Journal of Mathematics, 10 (1971), 186-195. doi: 10.1007/BF02771569.  Google Scholar

[12]

R. Saghin and J. Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advance in Mathematics, 355 (2019), 106764, 45 pp. doi: 10.1016/j.aim.2019.106764.  Google Scholar

[13]

A. Wilkinson and J. Xue, Rigidity of some abelian-by-cyclic solvable group actions on $\mathbb T^N$, Communications in Mathematical Physics, 376 (2020), 1223-1259. doi: 10.1007/s00220-019-03658-3.  Google Scholar

[1]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[4]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[7]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[8]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[9]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[13]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (78)
  • HTML views (252)
  • Cited by (0)

Other articles
by authors

[Back to Top]