In this paper, we study a local rigidity property of $ \mathbb Z \ltimes_\lambda \mathbb R $ affine action on tori generated by an irreducible toral automorphism and a linear flow along an eigenspace. Such an action exhibits a weak version of local rigidity, i.e., any smooth perturbations close enough to an affine action is smoothly conjugate to the affine action up to constant time change.
Citation: |
[1] | M. Asaoka, Rigidity of certain solvable actions on the sphere, Geometry & Topology, 16 (2012), 1835-1857. |
[2] | M. Asaoka, Rigidity of certain solvable actions on the torus, Geometry, Dynamics, and Foliations 2013, 269-281, Adv. Stud. Pure Math., 72, Math. Soc. Japan, Tokyo, 2017. doi: 10.2969/aspm/07210269. |
[3] | L. Burslem and A. Wilkinson, Global rigidity of solvable group actions on $S^1$, Geometry & Topology, 8 (2004), 877-924. doi: 10.2140/gt.2004.8.877. |
[4] | J. L. Dias, local conjugacy classes for analytic torus flows, Journal of Differential Equations, 245 (2008), 468-489. doi: 10.1016/j.jde.2008.04.006. |
[5] | R. De la Llave, A tutorial on KAM theory, Proceedings of Symposia in Pure Mathematics, 69 (2001), 175-292. doi: 10.1090/pspum/069/1858536. |
[6] | R. De la Llave, Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Communications in Mathematical Physics, 150 (1992), 289-320. doi: 10.1007/BF02096662. |
[7] | R. De la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livisic cohomology equation, Annals of Mathematics, 123 (1986), 537-611. doi: 10.2307/1971334. |
[8] | A. Gogolev, B. Kalinin and V. Sadovskaya, Local rigidity of Lyapunov spectrum for toral automorphisms, preprint, arXiv: 1808.06249. |
[9] | R. S. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of American Mathematical Society, 7 (1982), 65-122. doi: 10.1090/S0273-0979-1982-15004-2. |
[10] | N. Karaliolios, Local rigidity of diophantine translations in higher-dimensional tori, Regular and Chaotic Dynamics, 23 (2018), 12-25. doi: 10.1134/S1560354718010021. |
[11] | Y. Katzenlson, Ergodic automorphism of $\mathbb T^n$ are bernoulli shifts, Israel Journal of Mathematics, 10 (1971), 186-195. doi: 10.1007/BF02771569. |
[12] | R. Saghin and J. Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advance in Mathematics, 355 (2019), 106764, 45 pp. doi: 10.1016/j.aim.2019.106764. |
[13] | A. Wilkinson and J. Xue, Rigidity of some abelian-by-cyclic solvable group actions on $\mathbb T^N$, Communications in Mathematical Physics, 376 (2020), 1223-1259. doi: 10.1007/s00220-019-03658-3. |