doi: 10.3934/dcds.2020270

Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong, China, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China

Corresponding author: Chunyou Sun, sunchy@lzu.edu.cn

Received  January 2020 Revised  May 2020 Published  July 2020

Fund Project: This work was partly supported by the NSFC Grants 11471148, 11522109 and 11871169

In this paper, the non-autonomous dynamical behavior of weakly damped wave equation with a sup-cubic nonlinearity is considered in locally uniform spaces. We first prove the global well-posedness of the Shatah-Struwe solutions, then establish the existence of the $ \big(H_{lu}^{1}(\mathbb{R}^{3})\times L_{lu}^{2}(\mathbb{R}^{3}),H_{\rho}^{1}(\mathbb{R}^{3})\times L_{\rho}^{2}(\mathbb{R}^{3})\big) $-pullback attractor for the Shatah-Struwe solutions process of this equation. The results are based on the recent extension of Strichartz estimates for the bounded domains.

Citation: Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020270
References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[2]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.  doi: 10.1142/S0218202504003234.  Google Scholar

[3]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.  doi: 10.1002/mana.200510569.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829. doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[8]

N. BurqG. Lebeau and F. Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[9]

N. Burq and F. Planchon, Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.  doi: 10.1353/ajm.0.0084.  Google Scholar

[10]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[11]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.  Google Scholar

[13]

J. W. Cholewa and A. Rodríguez-Bernal, Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.  doi: 10.1016/j.jmaa.2016.11.085.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[15]

A. N. Carvalho and T. Dlotko, Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.  doi: 10.4064/cm100-2-6.  Google Scholar

[16]

J. W. Cholewa and T. Dlotko, Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.  doi: 10.4064/ba52-3-5.  Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.  doi: 10.1016/j.na.2005.06.021.  Google Scholar

[18]

M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[19]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[20]

E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.   Google Scholar

[21]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.  Google Scholar

[22]

V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains,, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y.  Google Scholar

[23]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.  Google Scholar

[24]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[25]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Differ. Equations Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.  Google Scholar

[27]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[28]

X. Y. Mei and C. Y. Sun, Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4117-4143.  doi: 10.3934/dcdsb.2019053.  Google Scholar

[29]

M. Mich$\acute{a}$lekD. Pra$\check{z}\acute{a}$k and J. Slavík, Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.  doi: 10.3934/cpaa.2017080.  Google Scholar

[30]

A. Mielke and G. Schneider, Attractors for modulation equations unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[31]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.  doi: 10.1088/0951-7715/10/1/014.  Google Scholar

[32]

A. Savostianov and S. V. Zelik, Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.   Google Scholar

[33]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.   Google Scholar

[34]

A. Savostianov and S. V. Zelik, Uniform attractors for measure-driven quintic wave equation, Uspekhi Mat. Nauk, 75 (2020), 61-132.  doi: 10.4213/rm9932.  Google Scholar

[35]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 1994 (1994), 303-309.  doi: 10.1155/S1073792894000346.  Google Scholar

[36] C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008.   Google Scholar
[37]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[38]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[39]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006. doi: 10.1090/cbms/106.  Google Scholar

[40]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[41]

B. X. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[42]

B. X. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[43]

X. H. WangK. N. Lu and B. X. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[44]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.  doi: 10.3934/dcds.2001.7.593.  Google Scholar

show all references

References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[2]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.  doi: 10.1142/S0218202504003234.  Google Scholar

[3]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.  doi: 10.1002/mana.200510569.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829. doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[8]

N. BurqG. Lebeau and F. Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[9]

N. Burq and F. Planchon, Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.  doi: 10.1353/ajm.0.0084.  Google Scholar

[10]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[11]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.  Google Scholar

[13]

J. W. Cholewa and A. Rodríguez-Bernal, Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.  doi: 10.1016/j.jmaa.2016.11.085.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[15]

A. N. Carvalho and T. Dlotko, Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.  doi: 10.4064/cm100-2-6.  Google Scholar

[16]

J. W. Cholewa and T. Dlotko, Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.  doi: 10.4064/ba52-3-5.  Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.  doi: 10.1016/j.na.2005.06.021.  Google Scholar

[18]

M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[19]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[20]

E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.   Google Scholar

[21]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.  Google Scholar

[22]

V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains,, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y.  Google Scholar

[23]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.  Google Scholar

[24]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[25]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Differ. Equations Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.  Google Scholar

[27]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[28]

X. Y. Mei and C. Y. Sun, Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4117-4143.  doi: 10.3934/dcdsb.2019053.  Google Scholar

[29]

M. Mich$\acute{a}$lekD. Pra$\check{z}\acute{a}$k and J. Slavík, Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.  doi: 10.3934/cpaa.2017080.  Google Scholar

[30]

A. Mielke and G. Schneider, Attractors for modulation equations unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[31]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.  doi: 10.1088/0951-7715/10/1/014.  Google Scholar

[32]

A. Savostianov and S. V. Zelik, Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.   Google Scholar

[33]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.   Google Scholar

[34]

A. Savostianov and S. V. Zelik, Uniform attractors for measure-driven quintic wave equation, Uspekhi Mat. Nauk, 75 (2020), 61-132.  doi: 10.4213/rm9932.  Google Scholar

[35]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 1994 (1994), 303-309.  doi: 10.1155/S1073792894000346.  Google Scholar

[36] C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008.   Google Scholar
[37]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[38]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[39]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006. doi: 10.1090/cbms/106.  Google Scholar

[40]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[41]

B. X. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[42]

B. X. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[43]

X. H. WangK. N. Lu and B. X. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[44]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.  doi: 10.3934/dcds.2001.7.593.  Google Scholar

[1]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[2]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[3]

Gaocheng Yue, Chengkui Zhong. Global attractors for the Gray-Scott equations in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 337-356. doi: 10.3934/dcdsb.2016.21.337

[4]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[5]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[6]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[7]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[8]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[9]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[10]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[11]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[12]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[13]

Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020410

[14]

Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783

[15]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[16]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[17]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations & Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[18]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[19]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[20]

Yuncheng You. Pullback uniform dissipativity of stochastic reversible Schnackenberg equations. Conference Publications, 2015, 2015 (special) : 1134-1142. doi: 10.3934/proc.2015.1134

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]