February  2021, 41(2): 569-600. doi: 10.3934/dcds.2020270

Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong, China, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China

Corresponding author: Chunyou Sun, sunchy@lzu.edu.cn

Received  January 2020 Revised  May 2020 Published  July 2020

Fund Project: This work was partly supported by the NSFC Grants 11471148, 11522109 and 11871169

In this paper, the non-autonomous dynamical behavior of weakly damped wave equation with a sup-cubic nonlinearity is considered in locally uniform spaces. We first prove the global well-posedness of the Shatah-Struwe solutions, then establish the existence of the $ \big(H_{lu}^{1}(\mathbb{R}^{3})\times L_{lu}^{2}(\mathbb{R}^{3}),H_{\rho}^{1}(\mathbb{R}^{3})\times L_{\rho}^{2}(\mathbb{R}^{3})\big) $-pullback attractor for the Shatah-Struwe solutions process of this equation. The results are based on the recent extension of Strichartz estimates for the bounded domains.

Citation: Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270
References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[2]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.  doi: 10.1142/S0218202504003234.  Google Scholar

[3]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.  doi: 10.1002/mana.200510569.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829. doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[8]

N. BurqG. Lebeau and F. Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[9]

N. Burq and F. Planchon, Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.  doi: 10.1353/ajm.0.0084.  Google Scholar

[10]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[11]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.  Google Scholar

[13]

J. W. Cholewa and A. Rodríguez-Bernal, Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.  doi: 10.1016/j.jmaa.2016.11.085.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[15]

A. N. Carvalho and T. Dlotko, Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.  doi: 10.4064/cm100-2-6.  Google Scholar

[16]

J. W. Cholewa and T. Dlotko, Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.  doi: 10.4064/ba52-3-5.  Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.  doi: 10.1016/j.na.2005.06.021.  Google Scholar

[18]

M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[19]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[20]

E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.   Google Scholar

[21]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.  Google Scholar

[22]

V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains,, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y.  Google Scholar

[23]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.  Google Scholar

[24]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[25]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Differ. Equations Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.  Google Scholar

[27]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[28]

X. Y. Mei and C. Y. Sun, Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4117-4143.  doi: 10.3934/dcdsb.2019053.  Google Scholar

[29]

M. Mich$\acute{a}$lekD. Pra$\check{z}\acute{a}$k and J. Slavík, Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.  doi: 10.3934/cpaa.2017080.  Google Scholar

[30]

A. Mielke and G. Schneider, Attractors for modulation equations unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[31]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.  doi: 10.1088/0951-7715/10/1/014.  Google Scholar

[32]

A. Savostianov and S. V. Zelik, Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.   Google Scholar

[33]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.   Google Scholar

[34]

A. Savostianov and S. V. Zelik, Uniform attractors for measure-driven quintic wave equation, Uspekhi Mat. Nauk, 75 (2020), 61-132.  doi: 10.4213/rm9932.  Google Scholar

[35]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 1994 (1994), 303-309.  doi: 10.1155/S1073792894000346.  Google Scholar

[36] C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008.   Google Scholar
[37]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[38]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[39]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006. doi: 10.1090/cbms/106.  Google Scholar

[40]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[41]

B. X. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[42]

B. X. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[43]

X. H. WangK. N. Lu and B. X. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[44]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.  doi: 10.3934/dcds.2001.7.593.  Google Scholar

show all references

References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[2]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.  doi: 10.1142/S0218202504003234.  Google Scholar

[3]

J. ArrietaJ. W. CholewaT. Dlotko and A. Rodríguez-Bernal, Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.  doi: 10.1002/mana.200510569.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829. doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[8]

N. BurqG. Lebeau and F. Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.  doi: 10.1090/S0894-0347-08-00596-1.  Google Scholar

[9]

N. Burq and F. Planchon, Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.  doi: 10.1353/ajm.0.0084.  Google Scholar

[10]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[11]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.  Google Scholar

[13]

J. W. Cholewa and A. Rodríguez-Bernal, Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.  doi: 10.1016/j.jmaa.2016.11.085.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[15]

A. N. Carvalho and T. Dlotko, Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.  doi: 10.4064/cm100-2-6.  Google Scholar

[16]

J. W. Cholewa and T. Dlotko, Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.  doi: 10.4064/ba52-3-5.  Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.  doi: 10.1016/j.na.2005.06.021.  Google Scholar

[18]

M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[19]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[20]

E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.   Google Scholar

[21]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.  Google Scholar

[22]

V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains,, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y.  Google Scholar

[23]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.  Google Scholar

[24]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[25]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Differ. Equations Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.  Google Scholar

[27]

S. S. LuH. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[28]

X. Y. Mei and C. Y. Sun, Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4117-4143.  doi: 10.3934/dcdsb.2019053.  Google Scholar

[29]

M. Mich$\acute{a}$lekD. Pra$\check{z}\acute{a}$k and J. Slavík, Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.  doi: 10.3934/cpaa.2017080.  Google Scholar

[30]

A. Mielke and G. Schneider, Attractors for modulation equations unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[31]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.  doi: 10.1088/0951-7715/10/1/014.  Google Scholar

[32]

A. Savostianov and S. V. Zelik, Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.   Google Scholar

[33]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.   Google Scholar

[34]

A. Savostianov and S. V. Zelik, Uniform attractors for measure-driven quintic wave equation, Uspekhi Mat. Nauk, 75 (2020), 61-132.  doi: 10.4213/rm9932.  Google Scholar

[35]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 1994 (1994), 303-309.  doi: 10.1155/S1073792894000346.  Google Scholar

[36] C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008.   Google Scholar
[37]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[38]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[39]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006. doi: 10.1090/cbms/106.  Google Scholar

[40]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[41]

B. X. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[42]

B. X. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[43]

X. H. WangK. N. Lu and B. X. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[44]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.  doi: 10.3934/dcds.2001.7.593.  Google Scholar

[1]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[2]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[11]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[14]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[18]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[19]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[20]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (130)
  • HTML views (254)
  • Cited by (0)

Other articles
by authors

[Back to Top]