November  2020, 40(11): 6089-6114. doi: 10.3934/dcds.2020271

Isomorphism and bi-Lipschitz equivalence between the univoque sets

Department of Mathematics, Ningbo University, Ningbo, Zhejiang, China

Received  April 2018 Revised  May 2020 Published  July 2020

In this paper, we consider a class of self-similar sets, denoted by $ \mathcal{A} $, and investigate the set of points in the self-similar sets having unique codings. We call such set the univoque set and denote it by $ U_1 $. We analyze the isomorphism and bi-Lipschitz equivalence between the univoque sets. The main result of this paper, in terms of the dimension of $ U_1 $, is to give several equivalent conditions which describe that the closure of two univoque sets, under the lazy maps, are measure theoretically isomorphic with respect to the unique measure of maximal entropy. Moreover, we prove, under the condition $ U_1 $ is closed, that isomorphism and bi-Lipschitz equivalence between the univoque sets have resonant phenomenon.

Citation: Kan Jiang, Lifeng Xi, Shengnan Xu, Jinjin Yang. Isomorphism and bi-Lipschitz equivalence between the univoque sets. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6089-6114. doi: 10.3934/dcds.2020271
References:
[1]

Shigeki Akiyama, Cubic Pisot units with finite beta expansions, Algebraic Number Theory and Diophantine Analysis (Graz, 1998), 11–26. de Gruyter, Berlin, 2000.  Google Scholar

[2]

Simon BakerKarma Dajani and Kan Jiang, On univoque points for self-similar sets, Fund. Math., 228 (2015), 265-282.  doi: 10.4064/fm228-3-4.  Google Scholar

[3]

X. ChenK. Jiang and W. Li, Lipschitz equivalence of a class of self-similar sets, Ann. Acad. Sci. Fenn. Math., 42 (2017), 585-591.  doi: 10.5186/aasfm.2017.4238.  Google Scholar

[4]

X. ChenK. Jiang and W. Li, Estimating the Hausdorff dimensions of univoque sets for self-similar sets, Indag. Math. (N.S.), 30 (2019), 862-873.  doi: 10.1016/j.indag.2019.06.001.  Google Scholar

[5]

K. DajaniK. JiangD. Kong and W. Li, Multiple expansions of real numbers with digits set $\{0, 1, q\}$, Math. Z., 291 (2019), 1605-1619.   Google Scholar

[6]

K. Dajani, K. Jiang, D. Kong and W. Li, Multiple codings for self-similar sets with overlaps, arXiv: 1603.09304, 2016. Google Scholar

[7]

M. de Vries and V. Komornik, Unique expansions of real numbers, Adv. Math., 221 (2009), 390-427.  doi: 10.1016/j.aim.2008.12.008.  Google Scholar

[8]

P. ErdősM. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.  doi: 10.1007/BF01903963.  Google Scholar

[9]

K. J. Falconer and D. T. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity, 2 (1989), 489-493.  doi: 10.1088/0951-7715/2/3/008.  Google Scholar

[10]

K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.  doi: 10.1112/S0025579300014959.  Google Scholar

[11]

D.-J. Feng and H. Hu, Dimension theory of iterated function systems, Comm. Pure Appl. Math., 62 (2009), 1435-1500.  doi: 10.1002/cpa.20276.  Google Scholar

[12]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.  doi: 10.4310/MRL.2001.v8.n4.a12.  Google Scholar

[13]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[14]

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[15]

K. Jiang and K. Dajani, Subshifts of finite type and self-similar sets, Nonlinearity, 30 (2017), 659-686.  doi: 10.1088/1361-6544/aa53c7.  Google Scholar

[16]

K. Jiang, S. Wang and L. Xi, On self-similar sets with exact overlaps, Submitted, 2017. Google Scholar

[17]

K. JiangS. Wang and L. Xi, Lipschitz equivalence of self-similar sets with exact overlaps, Ann. Acad. Sci. Fenn. Math., 43 (2018), 905-912.   Google Scholar

[18]

K.-S. Lau and S.-M. Ngai, A generalized finite type condition for iterated function systems, Adv. Math., 208 (2007), 647-671.  doi: 10.1016/j.aim.2006.03.007.  Google Scholar

[19]

B. Li, W. Li and J. Miao, Lipschitz equivalence of McMullen sets, Fractals, 21 (2013), 1350022, 11 pp. doi: 10.1142/S0218348X13500229.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

P. Mattila and P. Saaranen, Ahlfors-David regular sets and bilipschitz maps, Ann. Acad. Sci. Fenn. Math., 34 (2009), 487-502.   Google Scholar

[22]

R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988), 811-829.  doi: 10.1090/S0002-9947-1988-0961615-4.  Google Scholar

[23]

S.-M. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. (2), 63 (2001), 655-672.  doi: 10.1017/S0024610701001946.  Google Scholar

[24]

William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[25]

H. RaoH.-J. Ruan and L.-F. Xi, Lipschitz equivalence of self-similar sets, C. R. Math. Acad. Sci. Paris, 342 (2006), 191-196.  doi: 10.1016/j.crma.2005.12.016.  Google Scholar

[26]

H. Rao and Z. Yunjie, Lipschitz equivalence of fractals and finite state automaton, arXiv: 1609.04271, 2016. Google Scholar

[27]

H.-J. RuanY. Wang and L.-F. Xi., Lipschitz equivalence of self-similar sets with touching structures, Nonlinearity, 27 (2014), 1299-1321.  doi: 10.1088/0951-7715/27/6/1299.  Google Scholar

[28]

Peter Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[29]

Q. Wang and L. Xi, Quasi-Lipschitz equivalence of Ahlfors-David regular sets, Nonlinearity, 24 (2011), 941-950.  doi: 10.1088/0951-7715/24/3/011.  Google Scholar

[30]

Z. WenZ. Zhu and G. Deng, Lipschitz equivalence of a class of general Sierpinski carpets, J. Math. Anal. Appl., 385 (2012), 16-23.  doi: 10.1016/j.jmaa.2011.06.018.  Google Scholar

[31]

L.-F. Xi and H.-J. Ruan, Lipschitz equivalence of generalized $\{1, 3, 5\}$-$\{1, 4, 5\}$ self-similar sets, Sci. China Ser. A, 50 (2007), 1537-1551.  doi: 10.1007/s11425-007-0113-5.  Google Scholar

[32]

L.-F. Xi and Y. Xiong, Ensembles auto-similaires avec motifs initiaux cubiques, C. R. Math. Acad. Sci. Paris, 348 (2010), 15-20.  doi: 10.1016/j.crma.2009.12.006.  Google Scholar

[33]

L.-F. Xi and Y. Xiong, Lipschitz equivalence of fractals generated by nested cubes, Math. Z., 271 (2012), 1287-1308.  doi: 10.1007/s00209-011-0916-5.  Google Scholar

[34]

L.-F. Xi and Y. Xiong, Lipschitz equivalence class, ideal class and the gauss class number problem, arXiv: 1304.0103, 2013. Google Scholar

show all references

References:
[1]

Shigeki Akiyama, Cubic Pisot units with finite beta expansions, Algebraic Number Theory and Diophantine Analysis (Graz, 1998), 11–26. de Gruyter, Berlin, 2000.  Google Scholar

[2]

Simon BakerKarma Dajani and Kan Jiang, On univoque points for self-similar sets, Fund. Math., 228 (2015), 265-282.  doi: 10.4064/fm228-3-4.  Google Scholar

[3]

X. ChenK. Jiang and W. Li, Lipschitz equivalence of a class of self-similar sets, Ann. Acad. Sci. Fenn. Math., 42 (2017), 585-591.  doi: 10.5186/aasfm.2017.4238.  Google Scholar

[4]

X. ChenK. Jiang and W. Li, Estimating the Hausdorff dimensions of univoque sets for self-similar sets, Indag. Math. (N.S.), 30 (2019), 862-873.  doi: 10.1016/j.indag.2019.06.001.  Google Scholar

[5]

K. DajaniK. JiangD. Kong and W. Li, Multiple expansions of real numbers with digits set $\{0, 1, q\}$, Math. Z., 291 (2019), 1605-1619.   Google Scholar

[6]

K. Dajani, K. Jiang, D. Kong and W. Li, Multiple codings for self-similar sets with overlaps, arXiv: 1603.09304, 2016. Google Scholar

[7]

M. de Vries and V. Komornik, Unique expansions of real numbers, Adv. Math., 221 (2009), 390-427.  doi: 10.1016/j.aim.2008.12.008.  Google Scholar

[8]

P. ErdősM. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.  doi: 10.1007/BF01903963.  Google Scholar

[9]

K. J. Falconer and D. T. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity, 2 (1989), 489-493.  doi: 10.1088/0951-7715/2/3/008.  Google Scholar

[10]

K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.  doi: 10.1112/S0025579300014959.  Google Scholar

[11]

D.-J. Feng and H. Hu, Dimension theory of iterated function systems, Comm. Pure Appl. Math., 62 (2009), 1435-1500.  doi: 10.1002/cpa.20276.  Google Scholar

[12]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.  doi: 10.4310/MRL.2001.v8.n4.a12.  Google Scholar

[13]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[14]

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[15]

K. Jiang and K. Dajani, Subshifts of finite type and self-similar sets, Nonlinearity, 30 (2017), 659-686.  doi: 10.1088/1361-6544/aa53c7.  Google Scholar

[16]

K. Jiang, S. Wang and L. Xi, On self-similar sets with exact overlaps, Submitted, 2017. Google Scholar

[17]

K. JiangS. Wang and L. Xi, Lipschitz equivalence of self-similar sets with exact overlaps, Ann. Acad. Sci. Fenn. Math., 43 (2018), 905-912.   Google Scholar

[18]

K.-S. Lau and S.-M. Ngai, A generalized finite type condition for iterated function systems, Adv. Math., 208 (2007), 647-671.  doi: 10.1016/j.aim.2006.03.007.  Google Scholar

[19]

B. Li, W. Li and J. Miao, Lipschitz equivalence of McMullen sets, Fractals, 21 (2013), 1350022, 11 pp. doi: 10.1142/S0218348X13500229.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

P. Mattila and P. Saaranen, Ahlfors-David regular sets and bilipschitz maps, Ann. Acad. Sci. Fenn. Math., 34 (2009), 487-502.   Google Scholar

[22]

R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988), 811-829.  doi: 10.1090/S0002-9947-1988-0961615-4.  Google Scholar

[23]

S.-M. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. (2), 63 (2001), 655-672.  doi: 10.1017/S0024610701001946.  Google Scholar

[24]

William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[25]

H. RaoH.-J. Ruan and L.-F. Xi, Lipschitz equivalence of self-similar sets, C. R. Math. Acad. Sci. Paris, 342 (2006), 191-196.  doi: 10.1016/j.crma.2005.12.016.  Google Scholar

[26]

H. Rao and Z. Yunjie, Lipschitz equivalence of fractals and finite state automaton, arXiv: 1609.04271, 2016. Google Scholar

[27]

H.-J. RuanY. Wang and L.-F. Xi., Lipschitz equivalence of self-similar sets with touching structures, Nonlinearity, 27 (2014), 1299-1321.  doi: 10.1088/0951-7715/27/6/1299.  Google Scholar

[28]

Peter Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[29]

Q. Wang and L. Xi, Quasi-Lipschitz equivalence of Ahlfors-David regular sets, Nonlinearity, 24 (2011), 941-950.  doi: 10.1088/0951-7715/24/3/011.  Google Scholar

[30]

Z. WenZ. Zhu and G. Deng, Lipschitz equivalence of a class of general Sierpinski carpets, J. Math. Anal. Appl., 385 (2012), 16-23.  doi: 10.1016/j.jmaa.2011.06.018.  Google Scholar

[31]

L.-F. Xi and H.-J. Ruan, Lipschitz equivalence of generalized $\{1, 3, 5\}$-$\{1, 4, 5\}$ self-similar sets, Sci. China Ser. A, 50 (2007), 1537-1551.  doi: 10.1007/s11425-007-0113-5.  Google Scholar

[32]

L.-F. Xi and Y. Xiong, Ensembles auto-similaires avec motifs initiaux cubiques, C. R. Math. Acad. Sci. Paris, 348 (2010), 15-20.  doi: 10.1016/j.crma.2009.12.006.  Google Scholar

[33]

L.-F. Xi and Y. Xiong, Lipschitz equivalence of fractals generated by nested cubes, Math. Z., 271 (2012), 1287-1308.  doi: 10.1007/s00209-011-0916-5.  Google Scholar

[34]

L.-F. Xi and Y. Xiong, Lipschitz equivalence class, ideal class and the gauss class number problem, arXiv: 1304.0103, 2013. Google Scholar

Figure 1.  First iteration of $ K $
Figure 3.  First iteration of $ K_1 $
Figure 4.  First iteration of $ K_2 $
Figure 2.  First iteration of $ K $
[1]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[2]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[3]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[4]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[5]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[6]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

[7]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[8]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[9]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[10]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[11]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[12]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[13]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020168

[15]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[16]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[17]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[18]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[19]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[20]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]