We study a generalized Frenkel-Kontorova model. Using minimal and Birkhoff solutions as building blocks, we construct a lot of homoclinic solutions and heteroclinic solutions for this generalized Frenkel-Kontorova model under gap conditions. These new solutions are not minimal and Birkhoff any more. We use constrained minimization method to prove our results.
Citation: |
[1] |
V. Bangert, The existence of gaps in minimal foliations, Aequationes Mathematicae, 34 (1987), 153-166.
doi: 10.1007/BF01830667.![]() ![]() ![]() |
[2] |
V. Bangert, A uniqueness theorem for Zn-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531.
![]() ![]() |
[3] |
V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.
doi: 10.1016/S0294-1449(16)30328-6.![]() ![]() ![]() |
[4] |
U. Bessi, Slope-changing solutions of elliptic problems on $\bf R^n$, Nonlinear Anal., 68 (2008), 3923-3947.
doi: 10.1016/j.na.2007.04.031.![]() ![]() ![]() |
[5] |
L. A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.
doi: 10.1002/cpa.10008.![]() ![]() ![]() |
[6] |
L. A. Caffarelli and R. de la Llave, Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118 (2005), 687-719.
doi: 10.1007/s10955-004-8825-1.![]() ![]() ![]() |
[7] |
M. Cozzi, S. Dipierro and E. Valdinoci, Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167 (2017), 1401-1451.
doi: 10.1007/s10955-017-1783-1.![]() ![]() ![]() |
[8] |
R. de La Llave and E. Valdinoci, Critical points inside the gaps of ground state laminations for some models in statistical mechanics, J. Stat. Phys., 129 (2007), 81-119.
doi: 10.1007/s10955-007-9345-6.![]() ![]() ![]() |
[9] |
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.
doi: 10.1016/j.anihpc.2008.11.002.![]() ![]() ![]() |
[10] |
R. de La Llave and E. Valdinoci, Ground states and critical points for Aubry-Mather theory in statistical mechanics, J. Nonlinear Sci., 20 (2010), 153-218.
doi: 10.1007/s00332-009-9055-0.![]() ![]() ![]() |
[11] |
W.-L. Li and X. Cui, Heteroclinic solutions for a Frenkel-Kontorova model by minimization methods of Rabinowitz and Stredulinsky, J. Differential Equations, 268 (2020), 1106-1155.
doi: 10.1016/j.jde.2019.08.048.![]() ![]() ![]() |
[12] |
J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.
doi: 10.5802/aif.1377.![]() ![]() ![]() |
[13] |
X.-Q. Miao, W.-X. Qin and Y.-N. Wang, Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J. Differential Equations, 260 (2016), 1522-1557.
doi: 10.1016/j.jde.2015.09.039.![]() ![]() ![]() |
[14] |
J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.
doi: 10.1016/S0294-1449(16)30387-0.![]() ![]() ![]() |
[15] |
B. Mramor and B. Rink, Ghost circles in lattice Aubry-Mather theory, J. Differential Equations, 252 (2012), 3163-3208.
doi: 10.1016/j.jde.2011.11.023.![]() ![]() ![]() |
[16] |
P. H. Rabinowitz, Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113-127.
doi: 10.1007/s00032-011-0139-6.![]() ![]() ![]() |
[17] |
P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078-1134.
doi: 10.1002/cpa.10087.![]() ![]() ![]() |
[18] |
P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equation, 21 (2004), 157-207.
doi: 10.1007/s00526-003-0251-8.![]() ![]() ![]() |
[19] |
P. H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 673-688.
doi: 10.1016/j.anihpc.2003.10.002.![]() ![]() ![]() |
[20] |
P. H. Rabinowitz and Ed Stredulinsky, On some results of Moser and of Bangert, II, Adv. Nonlinear Stud., 4 (2004), 377-396.
doi: 10.1515/ans-2004-0402.![]() ![]() ![]() |
[21] |
P. H. Rabinowitz and Ed Stredulinsky, Infinite transition solutions for a class of Allen-Cahn model equations, J. Fixed Point Theory Appl., 4 (2008), 247-262.
doi: 10.1007/s11784-008-0091-4.![]() ![]() ![]() |
[22] |
P. H. Rabinowitz and Ed Stredulinsky, On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319-332.
doi: 10.3934/dcds.2008.21.319.![]() ![]() ![]() |
[23] |
P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and their Applications, 81, Birkhäuser/Springer, New York, 2011.
doi: 10.1007/978-0-8176-8117-3.![]() ![]() ![]() |
[24] |
M. Torres, Plane-like minimal surfaces in periodic media with exclusions, SIAM J. Math. Anal., 36 (2004), 523-551.
doi: 10.1137/S0036141001399970.![]() ![]() ![]() |
[25] |
E. Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068.![]() ![]() ![]() |