November  2020, 40(11): 6135-6158. doi: 10.3934/dcds.2020273

Multitransition solutions for a generalized Frenkel-Kontorova model

1. 

School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

2. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Wen-Long Li

Received  September 2019 Revised  May 2020 Published  July 2020

We study a generalized Frenkel-Kontorova model. Using minimal and Birkhoff solutions as building blocks, we construct a lot of homoclinic solutions and heteroclinic solutions for this generalized Frenkel-Kontorova model under gap conditions. These new solutions are not minimal and Birkhoff any more. We use constrained minimization method to prove our results.

Citation: Wen-Long Li, Xiaojun Cui. Multitransition solutions for a generalized Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6135-6158. doi: 10.3934/dcds.2020273
References:
[1]

V. Bangert, The existence of gaps in minimal foliations, Aequationes Mathematicae, 34 (1987), 153-166.  doi: 10.1007/BF01830667.  Google Scholar

[2]

V. Bangert, A uniqueness theorem for Zn-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531.   Google Scholar

[3]

V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.  doi: 10.1016/S0294-1449(16)30328-6.  Google Scholar

[4]

U. Bessi, Slope-changing solutions of elliptic problems on $\bf R^n$, Nonlinear Anal., 68 (2008), 3923-3947.  doi: 10.1016/j.na.2007.04.031.  Google Scholar

[5]

L. A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.  doi: 10.1002/cpa.10008.  Google Scholar

[6]

L. A. Caffarelli and R. de la Llave, Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118 (2005), 687-719.  doi: 10.1007/s10955-004-8825-1.  Google Scholar

[7]

M. CozziS. Dipierro and E. Valdinoci, Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167 (2017), 1401-1451.  doi: 10.1007/s10955-017-1783-1.  Google Scholar

[8]

R. de La Llave and E. Valdinoci, Critical points inside the gaps of ground state laminations for some models in statistical mechanics, J. Stat. Phys., 129 (2007), 81-119.  doi: 10.1007/s10955-007-9345-6.  Google Scholar

[9]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.  doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[10]

R. de La Llave and E. Valdinoci, Ground states and critical points for Aubry-Mather theory in statistical mechanics, J. Nonlinear Sci., 20 (2010), 153-218.  doi: 10.1007/s00332-009-9055-0.  Google Scholar

[11]

W.-L. Li and X. Cui, Heteroclinic solutions for a Frenkel-Kontorova model by minimization methods of Rabinowitz and Stredulinsky, J. Differential Equations, 268 (2020), 1106-1155.  doi: 10.1016/j.jde.2019.08.048.  Google Scholar

[12]

J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.  doi: 10.5802/aif.1377.  Google Scholar

[13]

X.-Q. MiaoW.-X. Qin and Y.-N. Wang, Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J. Differential Equations, 260 (2016), 1522-1557.  doi: 10.1016/j.jde.2015.09.039.  Google Scholar

[14]

J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.  doi: 10.1016/S0294-1449(16)30387-0.  Google Scholar

[15]

B. Mramor and B. Rink, Ghost circles in lattice Aubry-Mather theory, J. Differential Equations, 252 (2012), 3163-3208.  doi: 10.1016/j.jde.2011.11.023.  Google Scholar

[16]

P. H. Rabinowitz, Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113-127.  doi: 10.1007/s00032-011-0139-6.  Google Scholar

[17]

P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078-1134.  doi: 10.1002/cpa.10087.  Google Scholar

[18]

P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equation, 21 (2004), 157-207.  doi: 10.1007/s00526-003-0251-8.  Google Scholar

[19]

P. H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 673-688.  doi: 10.1016/j.anihpc.2003.10.002.  Google Scholar

[20]

P. H. Rabinowitz and Ed Stredulinsky, On some results of Moser and of Bangert, II, Adv. Nonlinear Stud., 4 (2004), 377-396.  doi: 10.1515/ans-2004-0402.  Google Scholar

[21]

P. H. Rabinowitz and Ed Stredulinsky, Infinite transition solutions for a class of Allen-Cahn model equations, J. Fixed Point Theory Appl., 4 (2008), 247-262.  doi: 10.1007/s11784-008-0091-4.  Google Scholar

[22]

P. H. Rabinowitz and Ed Stredulinsky, On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319-332.  doi: 10.3934/dcds.2008.21.319.  Google Scholar

[23]

P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and their Applications, 81, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-8117-3.  Google Scholar

[24]

M. Torres, Plane-like minimal surfaces in periodic media with exclusions, SIAM J. Math. Anal., 36 (2004), 523-551.  doi: 10.1137/S0036141001399970.  Google Scholar

[25]

E. Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.  doi: 10.1515/crll.2004.068.  Google Scholar

show all references

References:
[1]

V. Bangert, The existence of gaps in minimal foliations, Aequationes Mathematicae, 34 (1987), 153-166.  doi: 10.1007/BF01830667.  Google Scholar

[2]

V. Bangert, A uniqueness theorem for Zn-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531.   Google Scholar

[3]

V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.  doi: 10.1016/S0294-1449(16)30328-6.  Google Scholar

[4]

U. Bessi, Slope-changing solutions of elliptic problems on $\bf R^n$, Nonlinear Anal., 68 (2008), 3923-3947.  doi: 10.1016/j.na.2007.04.031.  Google Scholar

[5]

L. A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.  doi: 10.1002/cpa.10008.  Google Scholar

[6]

L. A. Caffarelli and R. de la Llave, Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118 (2005), 687-719.  doi: 10.1007/s10955-004-8825-1.  Google Scholar

[7]

M. CozziS. Dipierro and E. Valdinoci, Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167 (2017), 1401-1451.  doi: 10.1007/s10955-017-1783-1.  Google Scholar

[8]

R. de La Llave and E. Valdinoci, Critical points inside the gaps of ground state laminations for some models in statistical mechanics, J. Stat. Phys., 129 (2007), 81-119.  doi: 10.1007/s10955-007-9345-6.  Google Scholar

[9]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.  doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[10]

R. de La Llave and E. Valdinoci, Ground states and critical points for Aubry-Mather theory in statistical mechanics, J. Nonlinear Sci., 20 (2010), 153-218.  doi: 10.1007/s00332-009-9055-0.  Google Scholar

[11]

W.-L. Li and X. Cui, Heteroclinic solutions for a Frenkel-Kontorova model by minimization methods of Rabinowitz and Stredulinsky, J. Differential Equations, 268 (2020), 1106-1155.  doi: 10.1016/j.jde.2019.08.048.  Google Scholar

[12]

J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.  doi: 10.5802/aif.1377.  Google Scholar

[13]

X.-Q. MiaoW.-X. Qin and Y.-N. Wang, Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J. Differential Equations, 260 (2016), 1522-1557.  doi: 10.1016/j.jde.2015.09.039.  Google Scholar

[14]

J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.  doi: 10.1016/S0294-1449(16)30387-0.  Google Scholar

[15]

B. Mramor and B. Rink, Ghost circles in lattice Aubry-Mather theory, J. Differential Equations, 252 (2012), 3163-3208.  doi: 10.1016/j.jde.2011.11.023.  Google Scholar

[16]

P. H. Rabinowitz, Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113-127.  doi: 10.1007/s00032-011-0139-6.  Google Scholar

[17]

P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078-1134.  doi: 10.1002/cpa.10087.  Google Scholar

[18]

P. H. Rabinowitz and Ed Stredulinsky, Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equation, 21 (2004), 157-207.  doi: 10.1007/s00526-003-0251-8.  Google Scholar

[19]

P. H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 673-688.  doi: 10.1016/j.anihpc.2003.10.002.  Google Scholar

[20]

P. H. Rabinowitz and Ed Stredulinsky, On some results of Moser and of Bangert, II, Adv. Nonlinear Stud., 4 (2004), 377-396.  doi: 10.1515/ans-2004-0402.  Google Scholar

[21]

P. H. Rabinowitz and Ed Stredulinsky, Infinite transition solutions for a class of Allen-Cahn model equations, J. Fixed Point Theory Appl., 4 (2008), 247-262.  doi: 10.1007/s11784-008-0091-4.  Google Scholar

[22]

P. H. Rabinowitz and Ed Stredulinsky, On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319-332.  doi: 10.3934/dcds.2008.21.319.  Google Scholar

[23]

P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and their Applications, 81, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-8117-3.  Google Scholar

[24]

M. Torres, Plane-like minimal surfaces in periodic media with exclusions, SIAM J. Math. Anal., 36 (2004), 523-551.  doi: 10.1137/S0036141001399970.  Google Scholar

[25]

E. Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.  doi: 10.1515/crll.2004.068.  Google Scholar

[1]

Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773

[2]

Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147

[3]

Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341

[4]

David Yang Gao. Solutions and optimality criteria to box constrained nonconvex minimization problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 293-304. doi: 10.3934/jimo.2007.3.293

[5]

Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems & Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677

[6]

Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems & Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021

[7]

Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

[8]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[9]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[10]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103

[11]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[12]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[13]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[14]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[15]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[16]

María Andrea Arias Serna, María Eugenia Puerta Yepes, César Edinson Escalante Coterio, Gerardo Arango Ospina. $ (Q,r) $ Model with $ CVaR_α $ of costs minimization. Journal of Industrial & Management Optimization, 2017, 13 (1) : 135-146. doi: 10.3934/jimo.2016008

[17]

Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507

[18]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[19]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019136

[20]

Sandro Zagatti. Minimization of non quasiconvex functionals by integro-extremization method. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 625-641. doi: 10.3934/dcds.2008.21.625

2019 Impact Factor: 1.338

Article outline

[Back to Top]