November  2020, 40(11): 6159-6177. doi: 10.3934/dcds.2020274

On the Bidomain equations driven by stochastic forces

1. 

Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgarten-Strasse 7, D-64289 Darmstadt, Germany

2. 

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, 1015 Floyd ave., Richmond, VA, 23227, USA

3. 

Department of Mathematics, Taras Shevchenko National University of Kyiv, 4E Glushkov ave., Kyiv, 03127, Ukraine

* Corresponding author: Oleksandr Misiats

Received  September 2019 Revised  June 2020 Published  July 2020

The bidomain equations driven by stochastic forces and subject to nonlinearities of FitzHugh-Nagumo or Allen-Cahn type are considered for the first time. It is shown that this set of equations admits a global weak solution as well as a stationary solution, which generates a uniquely determined invariant measure.

Citation: Matthias Hieber, Oleksandr Misiats, Oleksandr Stanzhytskyi. On the Bidomain equations driven by stochastic forces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6159-6177. doi: 10.3934/dcds.2020274
References:
[1]

R. R. Aliev and A. V. Panfilov, A simple two-variable model for cardiac excitation, Fractals, 7 (1996), 293-301.  doi: 10.1016/0960-0779(95)00089-5.  Google Scholar

[2]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482.  doi: 10.1016/j.nonrwa.2007.10.007.  Google Scholar

[3]

P.-L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[4]

P. Colli-FranzoneL. Guerri and S. Tentoni, Mathematical modeling of the excitation process in myocardium tissues: Influence of fiber rotation on wavefront progagation and potential field, Math. Biosci., 110 (1990), 155-235.   Google Scholar

[5]

P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, Springer, 2014. doi: 10.1007/978-3-319-04801-7.  Google Scholar

[6]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, Evolution Equations, Semigroups and Functional Analysis. Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 49–78.  Google Scholar

[7]

G. Da PratoS. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23 (1987), 1-23.  doi: 10.1080/17442508708833480.  Google Scholar

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univerity Press, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[9] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univerity Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[10]

Y. Giga and N. Kajiwara, On a resolvent estimate for bidomain operators and its applications, J. Math. Anal. Appl., 459 (2018), 528-555.  doi: 10.1016/j.jmaa.2017.10.023.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 1981.  Google Scholar

[12]

M. Hieber and J. Prüss, $L_q$-Theory for the bidomain operator, Submitted. Google Scholar

[13]

M. Hieber and J. Prüss, On the bidomain problem with FitzHugh-Nagumo transport, Arch. Math., 111 (2018), 313–327. doi: 10.1007/s00013-018-1188-7.  Google Scholar

[14]

J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics Springer, New York, 1998.  Google Scholar

[15]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996–1026. doi: 10.1007/s10959-015-0606-z.  Google Scholar

[16]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Asymptotic behavior and homogenization of invariant measures, Stoch. Dyn., 19 (2019), 1950015, 27 pp. doi: 10.1142/S0219493719500151.  Google Scholar

[17]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Invariant measures for reaction-diffusion equations with weakly dissipative nonlinearities, Stochastics: An International Journal of Probability and Stochastic Processes, 2019. doi: 10.1080/17442508.2019.1691212.  Google Scholar

[18]

Y. Mori and H. Matano, Stability of front solutions of the bidomain equation, Comm. Pure Appl. Math., 69 (2016), 2364-2426.  doi: 10.1002/cpa.21634.  Google Scholar

[19]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 2007.  Google Scholar

[20]

J. Rogers and A. McCulloch, A collacation Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41 (1994), 743–757. Google Scholar

[21]

H. Tanabe, Equations of Evolution, Pitman, 1979.  Google Scholar

[22]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl, 10 (2009), 849-868.  doi: 10.1016/j.nonrwa.2007.11.008.  Google Scholar

show all references

References:
[1]

R. R. Aliev and A. V. Panfilov, A simple two-variable model for cardiac excitation, Fractals, 7 (1996), 293-301.  doi: 10.1016/0960-0779(95)00089-5.  Google Scholar

[2]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482.  doi: 10.1016/j.nonrwa.2007.10.007.  Google Scholar

[3]

P.-L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[4]

P. Colli-FranzoneL. Guerri and S. Tentoni, Mathematical modeling of the excitation process in myocardium tissues: Influence of fiber rotation on wavefront progagation and potential field, Math. Biosci., 110 (1990), 155-235.   Google Scholar

[5]

P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, Springer, 2014. doi: 10.1007/978-3-319-04801-7.  Google Scholar

[6]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, Evolution Equations, Semigroups and Functional Analysis. Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 49–78.  Google Scholar

[7]

G. Da PratoS. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23 (1987), 1-23.  doi: 10.1080/17442508708833480.  Google Scholar

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univerity Press, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[9] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univerity Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[10]

Y. Giga and N. Kajiwara, On a resolvent estimate for bidomain operators and its applications, J. Math. Anal. Appl., 459 (2018), 528-555.  doi: 10.1016/j.jmaa.2017.10.023.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 1981.  Google Scholar

[12]

M. Hieber and J. Prüss, $L_q$-Theory for the bidomain operator, Submitted. Google Scholar

[13]

M. Hieber and J. Prüss, On the bidomain problem with FitzHugh-Nagumo transport, Arch. Math., 111 (2018), 313–327. doi: 10.1007/s00013-018-1188-7.  Google Scholar

[14]

J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics Springer, New York, 1998.  Google Scholar

[15]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996–1026. doi: 10.1007/s10959-015-0606-z.  Google Scholar

[16]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Asymptotic behavior and homogenization of invariant measures, Stoch. Dyn., 19 (2019), 1950015, 27 pp. doi: 10.1142/S0219493719500151.  Google Scholar

[17]

O. Misiats, O. Stanzhytskyi and N. K. Yip, Invariant measures for reaction-diffusion equations with weakly dissipative nonlinearities, Stochastics: An International Journal of Probability and Stochastic Processes, 2019. doi: 10.1080/17442508.2019.1691212.  Google Scholar

[18]

Y. Mori and H. Matano, Stability of front solutions of the bidomain equation, Comm. Pure Appl. Math., 69 (2016), 2364-2426.  doi: 10.1002/cpa.21634.  Google Scholar

[19]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 2007.  Google Scholar

[20]

J. Rogers and A. McCulloch, A collacation Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41 (1994), 743–757. Google Scholar

[21]

H. Tanabe, Equations of Evolution, Pitman, 1979.  Google Scholar

[22]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl, 10 (2009), 849-868.  doi: 10.1016/j.nonrwa.2007.11.008.  Google Scholar

[1]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[2]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[3]

Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure & Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185

[4]

Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

[5]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[6]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[7]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[8]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[9]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[10]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[11]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[12]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020175

[13]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[14]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[15]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[16]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[17]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[18]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[19]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[20]

Ying-Cheng Lai, Kwangho Park. Noise-sensitive measure for stochastic resonance in biological oscillators. Mathematical Biosciences & Engineering, 2006, 3 (4) : 583-602. doi: 10.3934/mbe.2006.3.583

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (54)
  • Cited by (0)

[Back to Top]