
-
Previous Article
On Morawetz estimates with time-dependent weights for the Klein-Gordon equation
- DCDS Home
- This Issue
-
Next Article
Invariant manifolds and foliations for random differential equations driven by colored noise
The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition
IMAG, Univ. Montpellier, CNRS, Montpellier, France |
We consider the logarithmic Schrödinger equation in the focusing regime. For this equation, Gaussian initial data remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable solution. In the general case in dimension $ d = 1 $, the solution with Gaussian initial data is periodic, and we compute some approximations of the period in the case of small and large oscillations, showing that the period can be as large as wanted for the latter. The main result of this article is a principle of nonlinear superposition: starting from an initial data made of the sum of several standing Gaussian functions far from each other, the solution remains close (in $ L^2 $) to the sum of the corresponding Gaussian solutions for a long time, in square of the distance between the Gaussian functions.
References:
[1] |
M. A. Alejo and C. Muñoz,
Nonlinear stability of MKdV breathers, Comm. Math. Phys., 324 (2013), 233-262.
doi: 10.1007/s00220-013-1792-0. |
[2] |
M. A. Alejo and C. Muñoz,
Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, 8 (2015), 629-674.
doi: 10.2140/apde.2015.8.629. |
[3] |
A. H. Ardila, Orbital stability of Gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, (2016), Paper No. 335, 9pp. |
[4] |
W. Bao, R. Carles, C. Su and Q. Tang,
Error estimates of a regularized finite difference method for the logarithmic {S}chrödinger equation, SIAM J. Numer. Anal., 57 (2019), 657-680.
doi: 10.1137/18M1177445. |
[5] |
W. Bao, R. Carles, C. Su and Q. Tang,
Regularized numerical methods for the logarithmic Schrödinger equation, Numer. Math., 143 (2019), 461-487.
doi: 10.1007/s00211-019-01058-2. |
[6] |
I. Białynicki-Birula and J. Mycielski,
Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.
doi: 10.1016/0003-4916(76)90057-9. |
[7] |
H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3), 68 (2003), 036607, 6pp.
doi: 10.1103/PhysRevE.68.036607. |
[8] |
R. Carles and I. Gallagher,
Universal dynamics for the defocusing logarithmic Schrodinger equation, Duke Mathematical Journal, 167 (2018), 1761-1801.
doi: 10.1215/00127094-2018-0006. |
[9] |
T. Cazenave,
Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., 7 (1983), 1127-1140.
doi: 10.1016/0362-546X(83)90022-6. |
[10] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[11] |
T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse Math. (5), 2 (1980), 21–51.
doi: 10.5802/afst.543. |
[12] |
S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai,
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.
doi: 10.1137/050648389. |
[13] |
G. Chen and J. Liu, Soliton resolution for the modified KdV equation, 2019, arXiv: 1907.07115, Preprint. Google Scholar |
[14] |
R. Côte and S. Le Coz, High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 96 (2011), 135–166.
doi: 10.1016/j.matpur.2011.03.004. |
[15] |
R. Côte, Y. Martel and F. Merle,
Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.
|
[16] |
P. d'Avenia, E. Montefusco and M. Squassina, On the logarithmic {S}chrödinger equation, Commun. Contemp. Math., 16 (2014), 1350032, 15pp.
doi: 10.1142/S0219199713500326. |
[17] |
S. De Martino, M. Falanga, C. Godano and G. Lauro,
Logarithmic schrödinger-like equation as a model for magma transport, EPL (Europhysics Letters), 63 (2003), 472-475.
doi: 10.1209/epl/i2003-00547-6. |
[18] |
G. Ferriere, Existence of multi-solitons for the focusing logarithmic Schrödinger equation, arXiv: 2003.02571, Preprint. Google Scholar |
[19] |
G. Ferriere, Convergence rate in Wasserstein distance and semiclassical limit for the defocusing logarithmic Schrödinger equation, Analysis & PDE, to appear. Google Scholar |
[20] |
M. Grillakis,
Existence of nodal solutions of semilinear equations in ${\bf{R}}^N$, J. Differential Equations, 85 (1990), 367-400.
doi: 10.1016/0022-0396(90)90121-5. |
[21] |
M. Grillakis,
Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), 747-774.
doi: 10.1002/cpa.3160410602. |
[22] |
P. Guerrero, J. L. López and J. Nieto,
Global $H^1$ solvability of the 3D logarithmic Schrödinger equation, Nonlinear Anal. Real World Appl., 11 (2010), 79-87.
doi: 10.1016/j.nonrwa.2008.10.017. |
[23] |
E. F. Hefter,
Application of the nonlinear schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A, 32 (1985), 1201-1204.
doi: 10.1103/PhysRevA.32.1201. |
[24] |
E. Hernández and B. Remaud,
General properties of gausson-conserving descriptions of quantal damped motion, Phys. A, 105 (1981), 130-146.
doi: 10.1016/0378-4371(81)90066-2. |
[25] |
C. K. R. T. Jones,
An instability mechanism for radially symmetric standing waves of a nonlinear {S}chrödinger equation, J. Differential Equations, 71 (1988), 34-62.
doi: 10.1016/0022-0396(88)90037-X. |
[26] |
W. Królikowski, D. Edmundson and O. Bang,
Unified model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E, 61 (2000), 3122-3126.
doi: 10.1103/PhysRevE.61.3122. |
[27] |
Y. Martel and F. Merle,
Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.
doi: 10.1016/j.anihpc.2006.01.001. |
[28] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations, Comm. Math. Phys., 231 (2002), 347-373.
doi: 10.1007/s00220-002-0723-2. |
[29] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[30] |
R. M. Miura,
The Korteweg-de Vries equation: A survey of results, SIAM Rev., 18 (1976), 412-459.
doi: 10.1137/1018076. |
[31] |
T. Mizumachi,
Instability of bound states for 2D nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 13 (2005), 413-428.
doi: 10.3934/dcds.2005.13.413. |
[32] |
T. Mizumachi,
Vortex solitons for 2D focusing nonlinear Schrödinger equation, Differential Integral Equations, 18 (2005), 431-450.
|
[33] |
T. Mizumachi,
Instability of vortex solitons for 2D focusing NLS, Adv. Differential Equations, 12 (2007), 241-264.
|
[34] |
Z. Opial,
Sur les périodes des solutions de l'équation différentielle $x{\prime\prime}+g(x) = 0$, Ann. Polon. Math., 10 (1961), 49-72.
doi: 10.4064/ap-10-1-49-72. |
[35] |
W. Walter, Ordinary Differential Equations, vol. 182 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1998, Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics.
doi: 10.1007/978-1-4612-0601-9. |
[36] |
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118–134. |
show all references
References:
[1] |
M. A. Alejo and C. Muñoz,
Nonlinear stability of MKdV breathers, Comm. Math. Phys., 324 (2013), 233-262.
doi: 10.1007/s00220-013-1792-0. |
[2] |
M. A. Alejo and C. Muñoz,
Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, 8 (2015), 629-674.
doi: 10.2140/apde.2015.8.629. |
[3] |
A. H. Ardila, Orbital stability of Gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, (2016), Paper No. 335, 9pp. |
[4] |
W. Bao, R. Carles, C. Su and Q. Tang,
Error estimates of a regularized finite difference method for the logarithmic {S}chrödinger equation, SIAM J. Numer. Anal., 57 (2019), 657-680.
doi: 10.1137/18M1177445. |
[5] |
W. Bao, R. Carles, C. Su and Q. Tang,
Regularized numerical methods for the logarithmic Schrödinger equation, Numer. Math., 143 (2019), 461-487.
doi: 10.1007/s00211-019-01058-2. |
[6] |
I. Białynicki-Birula and J. Mycielski,
Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.
doi: 10.1016/0003-4916(76)90057-9. |
[7] |
H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3), 68 (2003), 036607, 6pp.
doi: 10.1103/PhysRevE.68.036607. |
[8] |
R. Carles and I. Gallagher,
Universal dynamics for the defocusing logarithmic Schrodinger equation, Duke Mathematical Journal, 167 (2018), 1761-1801.
doi: 10.1215/00127094-2018-0006. |
[9] |
T. Cazenave,
Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., 7 (1983), 1127-1140.
doi: 10.1016/0362-546X(83)90022-6. |
[10] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[11] |
T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse Math. (5), 2 (1980), 21–51.
doi: 10.5802/afst.543. |
[12] |
S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai,
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.
doi: 10.1137/050648389. |
[13] |
G. Chen and J. Liu, Soliton resolution for the modified KdV equation, 2019, arXiv: 1907.07115, Preprint. Google Scholar |
[14] |
R. Côte and S. Le Coz, High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 96 (2011), 135–166.
doi: 10.1016/j.matpur.2011.03.004. |
[15] |
R. Côte, Y. Martel and F. Merle,
Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.
|
[16] |
P. d'Avenia, E. Montefusco and M. Squassina, On the logarithmic {S}chrödinger equation, Commun. Contemp. Math., 16 (2014), 1350032, 15pp.
doi: 10.1142/S0219199713500326. |
[17] |
S. De Martino, M. Falanga, C. Godano and G. Lauro,
Logarithmic schrödinger-like equation as a model for magma transport, EPL (Europhysics Letters), 63 (2003), 472-475.
doi: 10.1209/epl/i2003-00547-6. |
[18] |
G. Ferriere, Existence of multi-solitons for the focusing logarithmic Schrödinger equation, arXiv: 2003.02571, Preprint. Google Scholar |
[19] |
G. Ferriere, Convergence rate in Wasserstein distance and semiclassical limit for the defocusing logarithmic Schrödinger equation, Analysis & PDE, to appear. Google Scholar |
[20] |
M. Grillakis,
Existence of nodal solutions of semilinear equations in ${\bf{R}}^N$, J. Differential Equations, 85 (1990), 367-400.
doi: 10.1016/0022-0396(90)90121-5. |
[21] |
M. Grillakis,
Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), 747-774.
doi: 10.1002/cpa.3160410602. |
[22] |
P. Guerrero, J. L. López and J. Nieto,
Global $H^1$ solvability of the 3D logarithmic Schrödinger equation, Nonlinear Anal. Real World Appl., 11 (2010), 79-87.
doi: 10.1016/j.nonrwa.2008.10.017. |
[23] |
E. F. Hefter,
Application of the nonlinear schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A, 32 (1985), 1201-1204.
doi: 10.1103/PhysRevA.32.1201. |
[24] |
E. Hernández and B. Remaud,
General properties of gausson-conserving descriptions of quantal damped motion, Phys. A, 105 (1981), 130-146.
doi: 10.1016/0378-4371(81)90066-2. |
[25] |
C. K. R. T. Jones,
An instability mechanism for radially symmetric standing waves of a nonlinear {S}chrödinger equation, J. Differential Equations, 71 (1988), 34-62.
doi: 10.1016/0022-0396(88)90037-X. |
[26] |
W. Królikowski, D. Edmundson and O. Bang,
Unified model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E, 61 (2000), 3122-3126.
doi: 10.1103/PhysRevE.61.3122. |
[27] |
Y. Martel and F. Merle,
Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.
doi: 10.1016/j.anihpc.2006.01.001. |
[28] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations, Comm. Math. Phys., 231 (2002), 347-373.
doi: 10.1007/s00220-002-0723-2. |
[29] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[30] |
R. M. Miura,
The Korteweg-de Vries equation: A survey of results, SIAM Rev., 18 (1976), 412-459.
doi: 10.1137/1018076. |
[31] |
T. Mizumachi,
Instability of bound states for 2D nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 13 (2005), 413-428.
doi: 10.3934/dcds.2005.13.413. |
[32] |
T. Mizumachi,
Vortex solitons for 2D focusing nonlinear Schrödinger equation, Differential Integral Equations, 18 (2005), 431-450.
|
[33] |
T. Mizumachi,
Instability of vortex solitons for 2D focusing NLS, Adv. Differential Equations, 12 (2007), 241-264.
|
[34] |
Z. Opial,
Sur les périodes des solutions de l'équation différentielle $x{\prime\prime}+g(x) = 0$, Ann. Polon. Math., 10 (1961), 49-72.
doi: 10.4064/ap-10-1-49-72. |
[35] |
W. Walter, Ordinary Differential Equations, vol. 182 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1998, Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics.
doi: 10.1007/978-1-4612-0601-9. |
[36] |
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118–134. |



[1] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[2] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[3] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[6] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[7] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[8] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[9] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[10] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[11] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[12] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[13] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[14] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[15] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[16] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[17] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[18] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[19] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[20] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]