February  2021, 41(2): 601-620. doi: 10.3934/dcds.2020278

Maximal factors of order $ d $ of dynamical cubespaces

Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences and School of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received  November 2019 Revised  June 2020 Published  August 2020

For a dynamical system $ (X, T) $, $ l\in\mathbb{N} $ and $ x\in X $, let $ \mathbf{Q}^{[l]}(X) $ and $ \overline{\mathcal{F}^{[l]}}(x^{[l]}) $ be the orbit closures of the diagonal point $ x^{[l]} $ under the parallelepipeds group $ \mathcal{G}^{[l]} $ and the face group $ \mathcal{F}^{[l]} $ actions respectively. In this paper, it is shown that for a minimal system $ (X, T) $ and every $ l\in \mathbb{N}, x\in X $, the maximal factors of order $ d $ of $ (\mathbf{Q}^{[l]}(X), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(x^{[l]}), \mathcal{F}^{[l]}) $ are $ (\mathbf{Q}^{[l]}(X_d), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(\pi(x)^{[l]}), \mathcal{F}^{[l]}) $ respectively, where $ \pi:X\to X/\mathbf{RP}^{[d]}(X) = X_d, d\in \mathbb{N}\cup\{\infty\} $ is the factor map and $ \mathbf{RP}^{[d]}(X) $ is the regionally proximal relation of order $ d $.

Citation: Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278
References:
[1]

J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[2]

H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Groups Actions, London Math. Soc. Lecture Notes Ser., 232, Cambridge Univ. Press, Cambridge, 1996. doi: 10.1017/CBO9780511735264.  Google Scholar

[3]

P. DongS. DonosoA. MaassS. Shao and X. Ye, Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.  doi: 10.1017/S0143385711000861.  Google Scholar

[4]

B. Host and B. Kra, Personal communications., Google Scholar

[5]

B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical surveys and monographs 236, Providence, Rhode Island: American Mathematical Society, 2018.  Google Scholar

[6]

B. HostB. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. in Math., 224 (2010), 103-129.  doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[7]

J. Qiu and J. Zhao, Top-nilpotent enveloping semigroups and pro-nilsystems, arXiv: 1911.05435. Google Scholar

[8]

S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.  doi: 10.1016/j.aim.2012.07.012.  Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

show all references

References:
[1]

J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[2]

H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Groups Actions, London Math. Soc. Lecture Notes Ser., 232, Cambridge Univ. Press, Cambridge, 1996. doi: 10.1017/CBO9780511735264.  Google Scholar

[3]

P. DongS. DonosoA. MaassS. Shao and X. Ye, Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.  doi: 10.1017/S0143385711000861.  Google Scholar

[4]

B. Host and B. Kra, Personal communications., Google Scholar

[5]

B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical surveys and monographs 236, Providence, Rhode Island: American Mathematical Society, 2018.  Google Scholar

[6]

B. HostB. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. in Math., 224 (2010), 103-129.  doi: 10.1016/j.aim.2009.11.009.  Google Scholar

[7]

J. Qiu and J. Zhao, Top-nilpotent enveloping semigroups and pro-nilsystems, arXiv: 1911.05435. Google Scholar

[8]

S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.  doi: 10.1016/j.aim.2012.07.012.  Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[1]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[4]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[5]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[6]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[7]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[8]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[10]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[12]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[13]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[16]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[17]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[18]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (234)
  • Cited by (0)

Other articles
by authors

[Back to Top]