Advanced Search
Article Contents
Article Contents

On morawetz estimates with time-dependent weights for the Klein-Gordon equation

  • * Corresponding author: Ihyeok Seo

    * Corresponding author: Ihyeok Seo 

This research was supported by NRF-2019R1F1A1061316

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We obtain some new Morawetz estimates for the Klein-Gordon flow of the form

    $ \begin{equation*} \big\| |\nabla|^{\sigma} e^{it \sqrt{1-\Delta}}f \big\|_{L^{2}_{x, t}(|(x, t)|^{-\alpha})} \lesssim \| f \|_{H^s} \end{equation*} $

    where $ \sigma, s\geq0 $ and $ \alpha>0 $. The conventional approaches to Morawetz estimates with $ |x|^{-\alpha} $ are no longer available in the case of time-dependent weights $ |(x, t)|^{-\alpha} $. Here we instead apply the Littlewood-Paley theory with Muckenhoupt $ A_2 $ weights to frequency localized estimates thereof that are obtained by making use of the bilinear interpolation between their bilinear form estimates which need to carefully analyze some relevant oscillatory integrals according to the different scaling of $ \sqrt{1-\Delta} $ for low and high frequencies.

    Mathematics Subject Classification: Primary: 35B45; Secondary: 35Q40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The range of $ (\alpha, \sigma) $ for (1) and (4) with $ s = 1/2 $

  • [1] J. A. BarcelóJ. M. BennettA. CarberyA. Ruiz and M. C. Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut, 21 (2008), 481-488.  doi: 10.5209/rev_REMA.2008.v21.n2.16405.
    [2] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.
    [3] P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.
    [4] L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.
    [5] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.
    [6] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in applied mathematics, Adv. Math. Suppl. Stud., Academic Press, New York, 8 (1983), 93–128.
    [7] T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.
    [8] Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.  doi: 10.1080/03605302.2015.1048551.
    [9] Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.  doi: 10.1090/proc/12951.
    [10] Y. Koh and I. Seo, Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications, Discrete Contin. Dyn. Syst., 37 (2017), 4877-4906.  doi: 10.3934/dcds.2017210.
    [11] Y. Koh and I. Seo, Strichartz and smoothing estimates in weighted $L^2$ spaces and their applications, to appear in Indiana Univ. Math. J., arXiv: 1803.10430.
    [12] D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.
    [13] H. LeeI. Seo and J. Seok, Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 40 (2020), 597-608.  doi: 10.3934/dcds.2020024.
    [14] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770.  doi: 10.1090/S0002-9904-1963-11025-3.
    [15] C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London Ser. A, 306 (1968), 291-296.  doi: 10.1098/rspa.1968.0151.
    [16] T. Ozawa and K. M. Rogers, Sharp Morawetz estimates, J. Anal. Math., 121 (2013), 163-175.  doi: 10.1007/s11854-013-0031-0.
    [17] M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc., 105 (2012), 393-423.  doi: 10.1112/plms/pds006.
    [18] I. Seo, A note on the Schrödinger smoothing effect, Math. Nachr., 292 (2019), 2481-2487.  doi: 10.1002/mana.201800502.
    [19] E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400883929.
  • 加载中



Article Metrics

HTML views(1399) PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint