• Previous Article
    Global existence of strong solutions to a biological network formulation model in 2+1 dimensions
  • DCDS Home
  • This Issue
  • Next Article
    The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition
November  2020, 40(11): 6275-6288. doi: 10.3934/dcds.2020279

On Morawetz estimates with time-dependent weights for the Klein-Gordon equation

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

* Corresponding author: Ihyeok Seo

Received  November 2019 Revised  April 2020 Published  July 2020

Fund Project: This research was supported by NRF-2019R1F1A1061316

We obtain some new Morawetz estimates for the Klein-Gordon flow of the form
$ \begin{equation*} \big\| |\nabla|^{\sigma} e^{it \sqrt{1-\Delta}}f \big\|_{L^{2}_{x, t}(|(x, t)|^{-\alpha})} \lesssim \| f \|_{H^s} \end{equation*} $
where
$ \sigma, s\geq0 $
and
$ \alpha>0 $
. The conventional approaches to Morawetz estimates with
$ |x|^{-\alpha} $
are no longer available in the case of time-dependent weights
$ |(x, t)|^{-\alpha} $
. Here we instead apply the Littlewood-Paley theory with Muckenhoupt
$ A_2 $
weights to frequency localized estimates thereof that are obtained by making use of the bilinear interpolation between their bilinear form estimates which need to carefully analyze some relevant oscillatory integrals according to the different scaling of
$ \sqrt{1-\Delta} $
for low and high frequencies.
Citation: Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279
References:
[1]

J. A. BarcelóJ. M. BennettA. CarberyA. Ruiz and M. C. Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut, 21 (2008), 481-488.  doi: 10.5209/rev_REMA.2008.v21.n2.16405.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.  Google Scholar

[3]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.  Google Scholar

[4]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[5]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in applied mathematics, Adv. Math. Suppl. Stud., Academic Press, New York, 8 (1983), 93–128.  Google Scholar

[7]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.  Google Scholar

[8]

Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.  doi: 10.1080/03605302.2015.1048551.  Google Scholar

[9]

Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.  doi: 10.1090/proc/12951.  Google Scholar

[10]

Y. Koh and I. Seo, Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications, Discrete Contin. Dyn. Syst., 37 (2017), 4877-4906.  doi: 10.3934/dcds.2017210.  Google Scholar

[11]

Y. Koh and I. Seo, Strichartz and smoothing estimates in weighted $L^2$ spaces and their applications, to appear in Indiana Univ. Math. J., arXiv: 1803.10430. Google Scholar

[12]

D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.  Google Scholar

[13]

H. LeeI. Seo and J. Seok, Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 40 (2020), 597-608.  doi: 10.3934/dcds.2020024.  Google Scholar

[14]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770.  doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[15]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London Ser. A, 306 (1968), 291-296.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[16]

T. Ozawa and K. M. Rogers, Sharp Morawetz estimates, J. Anal. Math., 121 (2013), 163-175.  doi: 10.1007/s11854-013-0031-0.  Google Scholar

[17]

M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc., 105 (2012), 393-423.  doi: 10.1112/plms/pds006.  Google Scholar

[18]

I. Seo, A note on the Schrödinger smoothing effect, Math. Nachr., 292 (2019), 2481-2487.  doi: 10.1002/mana.201800502.  Google Scholar

[19]

E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400883929.  Google Scholar

show all references

References:
[1]

J. A. BarcelóJ. M. BennettA. CarberyA. Ruiz and M. C. Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut, 21 (2008), 481-488.  doi: 10.5209/rev_REMA.2008.v21.n2.16405.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.  Google Scholar

[3]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.  Google Scholar

[4]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[5]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in applied mathematics, Adv. Math. Suppl. Stud., Academic Press, New York, 8 (1983), 93–128.  Google Scholar

[7]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.  Google Scholar

[8]

Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.  doi: 10.1080/03605302.2015.1048551.  Google Scholar

[9]

Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.  doi: 10.1090/proc/12951.  Google Scholar

[10]

Y. Koh and I. Seo, Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications, Discrete Contin. Dyn. Syst., 37 (2017), 4877-4906.  doi: 10.3934/dcds.2017210.  Google Scholar

[11]

Y. Koh and I. Seo, Strichartz and smoothing estimates in weighted $L^2$ spaces and their applications, to appear in Indiana Univ. Math. J., arXiv: 1803.10430. Google Scholar

[12]

D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.  Google Scholar

[13]

H. LeeI. Seo and J. Seok, Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 40 (2020), 597-608.  doi: 10.3934/dcds.2020024.  Google Scholar

[14]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770.  doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[15]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London Ser. A, 306 (1968), 291-296.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[16]

T. Ozawa and K. M. Rogers, Sharp Morawetz estimates, J. Anal. Math., 121 (2013), 163-175.  doi: 10.1007/s11854-013-0031-0.  Google Scholar

[17]

M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc., 105 (2012), 393-423.  doi: 10.1112/plms/pds006.  Google Scholar

[18]

I. Seo, A note on the Schrödinger smoothing effect, Math. Nachr., 292 (2019), 2481-2487.  doi: 10.1002/mana.201800502.  Google Scholar

[19]

E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400883929.  Google Scholar

Figure 1.  The range of $ (\alpha, \sigma) $ for (1) and (4) with $ s = 1/2 $
[1]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[2]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[3]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[4]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[5]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[6]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[7]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[8]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

[9]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[10]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[11]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[12]

Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the Klein-Gordon system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5131-5156. doi: 10.3934/cpaa.2020230

[13]

Katharina Schratz, Xiaofei Zhao. On comparison of asymptotic expansion techniques for nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2841-2865. doi: 10.3934/dcdsb.2020043

[14]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[15]

Milena Dimova, Natalia Kolkovska, Nikolai Kutev. Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28 (2) : 671-689. doi: 10.3934/era.2020035

[16]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[17]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[18]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[19]

Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889

[20]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (70)
  • HTML views (89)
  • Cited by (0)

[Back to Top]