    November  2020, 40(11): 6289-6307. doi: 10.3934/dcds.2020280

## Global existence of strong solutions to a biological network formulation model in 2+1 dimensions

 Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

* Corresponding author: Xiangsheng Xu

Received  December 2019 Revised  May 2020 Published  July 2020

In this paper we study the initial boundary value problem for the system $-\mbox{div}\left[(I+\mathbf{m} \mathbf{m}^T)\nabla p\right] = s(x), \ \ \mathbf{m}_t-\alpha^2\Delta\mathbf{m}+|\mathbf{m}|^{2(\gamma-1)}\mathbf{m} = \beta^2(\mathbf{m}\cdot\nabla p)\nabla p$ in two space dimensions. This problem has been proposed as a continuum model for biological transportation networks. The mathematical challenge is due to the presence of cubic nonlinearities, also known as trilinear forms, in the system. We obtain a weak solution $(\mathbf{m}, p)$ with both $|\nabla p|$ and $|\nabla\mathbf{m}|$ being bounded. The result immediately triggers a bootstrap argument which can yield higher regularity for the weak solution. This is achieved by deriving an equation for $v\equiv(I+\mathbf{m} \mathbf{m}^T)\nabla p\cdot\nabla p$, and then suitably applying the De Giorge iteration method to the equation.

Citation: Xiangsheng Xu. Global existence of strong solutions to a biological network formulation model in 2+1 dimensions. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6289-6307. doi: 10.3934/dcds.2020280
##### References:
  G. Albi, M. Artina, M. Fornasier and P. A. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar  G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017. Google Scholar  G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256. Google Scholar  S. Bernstein, Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.  doi: 10.1007/BF01449980.  Google Scholar  E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar  D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar  J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar  J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar  D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. Google Scholar  D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701. Google Scholar  Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. Google Scholar  B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162. doi: 10.3934/krm.2019043.  Google Scholar  J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526. doi: 10.1016/j.jde.2018.01.001.  Google Scholar  N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206. Google Scholar  L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104. Google Scholar  J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987. Google Scholar  J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852. doi: 10.3390/sym11070852. Google Scholar  R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981. Google Scholar  X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992. doi: 10.1090/S0002-9947-97-01734-0.  Google Scholar  X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar  X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. Google Scholar  X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. Google Scholar  G. Yuan, Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.  doi: 10.1080/00036819408840253.  Google Scholar

show all references

##### References:
  G. Albi, M. Artina, M. Fornasier and P. A. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar  G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017. Google Scholar  G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256. Google Scholar  S. Bernstein, Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.  doi: 10.1007/BF01449980.  Google Scholar  E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar  D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar  J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar  J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar  D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. Google Scholar  D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701. Google Scholar  Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. Google Scholar  B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162. doi: 10.3934/krm.2019043.  Google Scholar  J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526. doi: 10.1016/j.jde.2018.01.001.  Google Scholar  N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206. Google Scholar  L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104. Google Scholar  J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987. Google Scholar  J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852. doi: 10.3390/sym11070852. Google Scholar  R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981. Google Scholar  X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992. doi: 10.1090/S0002-9947-97-01734-0.  Google Scholar  X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar  X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. Google Scholar  X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. Google Scholar  G. Yuan, Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.  doi: 10.1080/00036819408840253.  Google Scholar
  Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic & Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018  Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409  Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017  Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101  Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312  Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032  Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013  Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043  Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339  Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373  Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257  Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855  Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033  Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270  Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045  Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973  Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239  Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011  Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038  Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

2020 Impact Factor: 1.392