# American Institute of Mathematical Sciences

November  2020, 40(11): 6289-6307. doi: 10.3934/dcds.2020280

## Global existence of strong solutions to a biological network formulation model in 2+1 dimensions

 Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

* Corresponding author: Xiangsheng Xu

Received  December 2019 Revised  May 2020 Published  July 2020

In this paper we study the initial boundary value problem for the system $-\mbox{div}\left[(I+\mathbf{m} \mathbf{m}^T)\nabla p\right] = s(x), \ \ \mathbf{m}_t-\alpha^2\Delta\mathbf{m}+|\mathbf{m}|^{2(\gamma-1)}\mathbf{m} = \beta^2(\mathbf{m}\cdot\nabla p)\nabla p$ in two space dimensions. This problem has been proposed as a continuum model for biological transportation networks. The mathematical challenge is due to the presence of cubic nonlinearities, also known as trilinear forms, in the system. We obtain a weak solution $(\mathbf{m}, p)$ with both $|\nabla p|$ and $|\nabla\mathbf{m}|$ being bounded. The result immediately triggers a bootstrap argument which can yield higher regularity for the weak solution. This is achieved by deriving an equation for $v\equiv(I+\mathbf{m} \mathbf{m}^T)\nabla p\cdot\nabla p$, and then suitably applying the De Giorge iteration method to the equation.

Citation: Xiangsheng Xu. Global existence of strong solutions to a biological network formulation model in 2+1 dimensions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6289-6307. doi: 10.3934/dcds.2020280
##### References:
 [1] G. Albi, M. Artina, M. Fornasier and P. A. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar [2] G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017.  Google Scholar [3] G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256.   Google Scholar [4] S. Bernstein, Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.  doi: 10.1007/BF01449980.  Google Scholar [5] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar [7] J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar [8] J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar [9] D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. Google Scholar [10] D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701.  Google Scholar [11] Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968.  Google Scholar [12] B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162. doi: 10.3934/krm.2019043.  Google Scholar [13] J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526. doi: 10.1016/j.jde.2018.01.001.  Google Scholar [14] N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206.  Google Scholar [15] L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104.  Google Scholar [16] J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987.  Google Scholar [17] J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852. doi: 10.3390/sym11070852.  Google Scholar [18] R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981.   Google Scholar [19] X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992. doi: 10.1090/S0002-9947-97-01734-0.  Google Scholar [20] X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar [21] X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. Google Scholar [22] X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. Google Scholar [23] G. Yuan, Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.  doi: 10.1080/00036819408840253.  Google Scholar

show all references

##### References:
 [1] G. Albi, M. Artina, M. Fornasier and P. A. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar [2] G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017.  Google Scholar [3] G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256.   Google Scholar [4] S. Bernstein, Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.  doi: 10.1007/BF01449980.  Google Scholar [5] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar [7] J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar [8] J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar [9] D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. Google Scholar [10] D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701.  Google Scholar [11] Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968.  Google Scholar [12] B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162. doi: 10.3934/krm.2019043.  Google Scholar [13] J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526. doi: 10.1016/j.jde.2018.01.001.  Google Scholar [14] N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206.  Google Scholar [15] L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104.  Google Scholar [16] J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987.  Google Scholar [17] J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852. doi: 10.3390/sym11070852.  Google Scholar [18] R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981.   Google Scholar [19] X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992. doi: 10.1090/S0002-9947-97-01734-0.  Google Scholar [20] X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar [21] X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. Google Scholar [22] X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. Google Scholar [23] G. Yuan, Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.  doi: 10.1080/00036819408840253.  Google Scholar
 [1] Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic & Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018 [2] Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409 [3] Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 [4] Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101 [5] Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032 [6] Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020013 [7] Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 [8] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339 [9] Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 [10] Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020270 [11] Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973 [12] Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045 [13] Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239 [14] Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 [15] Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855 [16] Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033 [17] Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038 [18] Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032 [19] Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35 [20] D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

2019 Impact Factor: 1.338

Article outline