
-
Previous Article
Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions
- DCDS Home
- This Issue
-
Next Article
Global existence of strong solutions to a biological network formulation model in 2+1 dimensions
Matching for a family of infinite measure continued fraction transformations
1. | Department of Mathematics, Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands |
2. | John Cabot University, 00165 Roma, Italy, Via della Lungara 233, 00165 Roma, Italy |
As a natural counterpart to Nakada's $ \alpha $-continued fraction maps, we study a one-parameter family of continued fraction transformations with an indifferent fixed point. We prove that matching holds for Lebesgue almost every parameter in this family and that the exceptional set has Hausdorff dimension 1. Due to this matching property, we can construct a planar version of the natural extension for a large part of the parameter space. We use this to obtain an explicit expression for the density of the unique infinite $ \sigma $-finite absolutely continuous invariant measure and to compute the Krengel entropy, return sequence and wandering rate of the corresponding maps.
References:
[1] |
J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/surv/050. |
[2] |
P. Arnoux and T. A. Schmidt,
Cross sections for geodesic flows and $\alpha$-continued fractions, Nonlinearity, 26 (2013), 711-726.
doi: 10.1088/0951-7715/26/3/711. |
[3] |
C. Bonanno, C. Carminati, S. Isola and G. Tiozzo,
Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst., 33 (2013), 1313-1332.
doi: 10.3934/dcds.2013.33.1313. |
[4] |
V. Botella-Soler, J. A. Oteo, J. Ros and P. Glendinning, Lyapunov exponent and topological entropy plateaus in piecewise linear maps, J. Phys. A, 46 (2013), 26pp.
doi: 10.1088/1751-8113/46/12/125101. |
[5] |
H. Bruin, C. Carminati and C. Kalle,
Matching for generalised $\beta$-transformations, Indag. Math. (N.S.), 28 (2017), 55-73.
doi: 10.1016/j.indag.2016.11.005. |
[6] |
H. Bruin, C. Carminati, S. Marmi and A. Profeti,
Matching in a family of piecewise affine maps, Nonlinearity, 32 (2019), 172-208.
doi: 10.1088/1361-6544/aae935. |
[7] |
C. Carminati, S. Isola and G. Tiozzo,
Continued fractions with $SL(2, Z)$-branches: Combinatorics and entropy, Trans. Amer. Math. Soc., 370 (2018), 4927-4973.
doi: 10.1090/tran/7109. |
[8] |
C. Carminati, S. Marmi, A. Profeti and G. Tiozzo,
The entropy of $\alpha$-continued fractions: Numerical results, Nonlinearity, 23 (2010), 2429-2456.
doi: 10.1088/0951-7715/23/10/005. |
[9] |
C. Carminati and G. Tiozzo,
A canonical thickening of $\Bbb Q$ and the entropy of $\alpha$-continued fraction transformations, Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269.
doi: 10.1017/S0143385711000447. |
[10] |
C. Carminati and G. Tiozzo,
Tuning and plateaux for the entropy of $\alpha$-continued fractions, Nonlinearity, 26 (2013), 1049-1070.
doi: 10.1088/0951-7715/26/4/1049. |
[11] |
D. Cosper and M. Misiurewicz,
Entropy locking, Fund. Math., 241 (2018), 83-96.
doi: 10.4064/fm330-5-2017. |
[12] |
K. Dajani, D. Hensley, C. Kraaikamp and V. Masarotto,
Arithmetic and ergodic properties of 'flipped' continued fraction algorithms, Acta Arith., 153 (2012), 51-79.
doi: 10.4064/aa153-1-4. |
[13] |
K. Dajani and C. Kalle, Invariant measures, matching and the frequency of 0 for signed binary expansions, preprint, arXiv: 1703.06335. Google Scholar |
[14] |
K. Dajani and C. Kraaikamp,
The mother of all continued fractions, Colloq. Math., 84/85 (2000), 109-123.
doi: 10.4064/cm-84/85-1-109-123. |
[15] |
K. Dajani, C. Kraaikamp and W. Steiner,
Metrical theory for $\alpha$-Rosen fractions, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.
doi: 10.4171/JEMS/181. |
[16] |
A. Haas,
Invariant measures and natural extensions, Canad. Math. Bull., 45 (2002), 97-108.
doi: 10.4153/CMB-2002-011-4. |
[17] |
Y. Hartono and C. Kraaikamp,
On continued fractions with odd partial quotients, Rev. Roumaine Math. Pures Appl., 47 (2002), 43-62.
|
[18] |
C. Kalle,
Isomorphisms between positive and negative $\beta$-transformations, Ergodic Theory Dynam. Systems, 34 (2014), 153-170.
doi: 10.1017/etds.2012.127. |
[19] |
C. Kalle and W. Steiner,
Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364 (2012), 2281-2318.
doi: 10.1090/S0002-9947-2012-05362-1. |
[20] |
S. Katok and I. Ugarcovici,
Structure of attractors for $(a, b)$-continued fraction transformations, J. Mod. Dyn., 4 (2010), 637-691.
doi: 10.3934/jmd.2010.4.637. |
[21] |
C. Kraaikamp,
A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.
doi: 10.4064/aa-57-1-1-39. |
[22] |
C. Kraaikamp, T. A. Schmidt and W. Steiner,
Natural extensions and entropy of $\alpha$-continued fractions, Nonlinearity, 25 (2012), 2207-2243.
doi: 10.1088/0951-7715/25/8/2207. |
[23] |
U. Krengel,
Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 161-181.
doi: 10.1007/BF00532635. |
[24] |
L. Lewin, Polylogarithms and Associated Aunctions, North-Holland Publishing Co., New York-Amsterdam, 1981. |
[25] |
L. Luzzi and S. Marmi,
On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., 20 (2008), 673-711.
doi: 10.3934/dcds.2008.20.673. |
[26] |
S. Marmi, P. Moussa and J.-C. Yoccoz,
The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.
doi: 10.1007/s002200050110. |
[27] |
H. Nakada,
Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426.
doi: 10.3836/tjm/1270215165. |
[28] |
H. Nakada and R. Natsui,
The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.
doi: 10.1088/0951-7715/21/6/003. |
[29] |
O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957. |
[30] |
V. A. Rohlin,
Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530.
|
[31] |
B. Schratzberger,
$S$-expansions in dimension two, J. Théor. Nombres Bordeaux, 16 (2004), 705-732.
doi: 10.5802/jtnb.467. |
[32] |
C. E. Silva,
On $\mu$-recurrent nonsingular endomorphisms, Israel J. Math., 61 (1988), 1-13.
doi: 10.1007/BF02776298. |
[33] |
C. E. Silva and P. Thieullen,
The subadditive ergodic theorem and recurrence properties of Markovian transformations, J. Math. Anal. Appl., 154 (1991), 83-99.
doi: 10.1016/0022-247X(91)90072-8. |
[34] |
M. Thaler,
Transformations on $[0, \, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[35] |
G. Tiozzo,
The entropy of Nakada's $\alpha$-continued fractions: Analytical results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1009-1037.
|
[36] |
R. Zweimüller,
Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276.
doi: 10.1088/0951-7715/11/5/005. |
[37] |
R. Zweimüller,
Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems, 20 (2000), 1519-1549.
doi: 10.1017/S0143385700000821. |
[38] |
R. Zweimüller, Surrey Notes on Infinite Ergodic Theory, 2009. Available from: http://mat.univie.ac.at/ zweimueller/MyPub/SurreyNotes.pdf. Google Scholar |
show all references
References:
[1] |
J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/surv/050. |
[2] |
P. Arnoux and T. A. Schmidt,
Cross sections for geodesic flows and $\alpha$-continued fractions, Nonlinearity, 26 (2013), 711-726.
doi: 10.1088/0951-7715/26/3/711. |
[3] |
C. Bonanno, C. Carminati, S. Isola and G. Tiozzo,
Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst., 33 (2013), 1313-1332.
doi: 10.3934/dcds.2013.33.1313. |
[4] |
V. Botella-Soler, J. A. Oteo, J. Ros and P. Glendinning, Lyapunov exponent and topological entropy plateaus in piecewise linear maps, J. Phys. A, 46 (2013), 26pp.
doi: 10.1088/1751-8113/46/12/125101. |
[5] |
H. Bruin, C. Carminati and C. Kalle,
Matching for generalised $\beta$-transformations, Indag. Math. (N.S.), 28 (2017), 55-73.
doi: 10.1016/j.indag.2016.11.005. |
[6] |
H. Bruin, C. Carminati, S. Marmi and A. Profeti,
Matching in a family of piecewise affine maps, Nonlinearity, 32 (2019), 172-208.
doi: 10.1088/1361-6544/aae935. |
[7] |
C. Carminati, S. Isola and G. Tiozzo,
Continued fractions with $SL(2, Z)$-branches: Combinatorics and entropy, Trans. Amer. Math. Soc., 370 (2018), 4927-4973.
doi: 10.1090/tran/7109. |
[8] |
C. Carminati, S. Marmi, A. Profeti and G. Tiozzo,
The entropy of $\alpha$-continued fractions: Numerical results, Nonlinearity, 23 (2010), 2429-2456.
doi: 10.1088/0951-7715/23/10/005. |
[9] |
C. Carminati and G. Tiozzo,
A canonical thickening of $\Bbb Q$ and the entropy of $\alpha$-continued fraction transformations, Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269.
doi: 10.1017/S0143385711000447. |
[10] |
C. Carminati and G. Tiozzo,
Tuning and plateaux for the entropy of $\alpha$-continued fractions, Nonlinearity, 26 (2013), 1049-1070.
doi: 10.1088/0951-7715/26/4/1049. |
[11] |
D. Cosper and M. Misiurewicz,
Entropy locking, Fund. Math., 241 (2018), 83-96.
doi: 10.4064/fm330-5-2017. |
[12] |
K. Dajani, D. Hensley, C. Kraaikamp and V. Masarotto,
Arithmetic and ergodic properties of 'flipped' continued fraction algorithms, Acta Arith., 153 (2012), 51-79.
doi: 10.4064/aa153-1-4. |
[13] |
K. Dajani and C. Kalle, Invariant measures, matching and the frequency of 0 for signed binary expansions, preprint, arXiv: 1703.06335. Google Scholar |
[14] |
K. Dajani and C. Kraaikamp,
The mother of all continued fractions, Colloq. Math., 84/85 (2000), 109-123.
doi: 10.4064/cm-84/85-1-109-123. |
[15] |
K. Dajani, C. Kraaikamp and W. Steiner,
Metrical theory for $\alpha$-Rosen fractions, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.
doi: 10.4171/JEMS/181. |
[16] |
A. Haas,
Invariant measures and natural extensions, Canad. Math. Bull., 45 (2002), 97-108.
doi: 10.4153/CMB-2002-011-4. |
[17] |
Y. Hartono and C. Kraaikamp,
On continued fractions with odd partial quotients, Rev. Roumaine Math. Pures Appl., 47 (2002), 43-62.
|
[18] |
C. Kalle,
Isomorphisms between positive and negative $\beta$-transformations, Ergodic Theory Dynam. Systems, 34 (2014), 153-170.
doi: 10.1017/etds.2012.127. |
[19] |
C. Kalle and W. Steiner,
Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364 (2012), 2281-2318.
doi: 10.1090/S0002-9947-2012-05362-1. |
[20] |
S. Katok and I. Ugarcovici,
Structure of attractors for $(a, b)$-continued fraction transformations, J. Mod. Dyn., 4 (2010), 637-691.
doi: 10.3934/jmd.2010.4.637. |
[21] |
C. Kraaikamp,
A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.
doi: 10.4064/aa-57-1-1-39. |
[22] |
C. Kraaikamp, T. A. Schmidt and W. Steiner,
Natural extensions and entropy of $\alpha$-continued fractions, Nonlinearity, 25 (2012), 2207-2243.
doi: 10.1088/0951-7715/25/8/2207. |
[23] |
U. Krengel,
Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 161-181.
doi: 10.1007/BF00532635. |
[24] |
L. Lewin, Polylogarithms and Associated Aunctions, North-Holland Publishing Co., New York-Amsterdam, 1981. |
[25] |
L. Luzzi and S. Marmi,
On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., 20 (2008), 673-711.
doi: 10.3934/dcds.2008.20.673. |
[26] |
S. Marmi, P. Moussa and J.-C. Yoccoz,
The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.
doi: 10.1007/s002200050110. |
[27] |
H. Nakada,
Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426.
doi: 10.3836/tjm/1270215165. |
[28] |
H. Nakada and R. Natsui,
The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.
doi: 10.1088/0951-7715/21/6/003. |
[29] |
O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957. |
[30] |
V. A. Rohlin,
Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530.
|
[31] |
B. Schratzberger,
$S$-expansions in dimension two, J. Théor. Nombres Bordeaux, 16 (2004), 705-732.
doi: 10.5802/jtnb.467. |
[32] |
C. E. Silva,
On $\mu$-recurrent nonsingular endomorphisms, Israel J. Math., 61 (1988), 1-13.
doi: 10.1007/BF02776298. |
[33] |
C. E. Silva and P. Thieullen,
The subadditive ergodic theorem and recurrence properties of Markovian transformations, J. Math. Anal. Appl., 154 (1991), 83-99.
doi: 10.1016/0022-247X(91)90072-8. |
[34] |
M. Thaler,
Transformations on $[0, \, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[35] |
G. Tiozzo,
The entropy of Nakada's $\alpha$-continued fractions: Analytical results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1009-1037.
|
[36] |
R. Zweimüller,
Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276.
doi: 10.1088/0951-7715/11/5/005. |
[37] |
R. Zweimüller,
Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems, 20 (2000), 1519-1549.
doi: 10.1017/S0143385700000821. |
[38] |
R. Zweimüller, Surrey Notes on Infinite Ergodic Theory, 2009. Available from: http://mat.univie.ac.at/ zweimueller/MyPub/SurreyNotes.pdf. Google Scholar |




Density |
|
Density |
|
[1] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[2] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022 |
[5] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[6] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[7] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
[8] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[9] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[10] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025 |
[11] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[12] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[13] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[14] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[15] |
Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037 |
[16] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[17] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[18] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[19] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[20] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]