Transfer operators and Ruelle zeta functions for super-continuous functions on one-sided topological Markov shifts are considered. For every super-continuous function, we construct a Banach space on which the associated transfer operator is compact. Using this Banach space, we establish the trace formula and spectral representation of Ruelle zeta functions for a certain class of super-continuous functions. Our results include, as a special case, the classical trace formula and spectral representation for the class of locally constant functions.
Citation: |
[1] | V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, in Geometric and Probabilistic Structures in Dynamics, Contemp. Math., 469, Amer. Math. Soc., Providence, RI, 2008, 29–68. doi: 10.1090/conm/469/09160. |
[2] | R. P. Boas, Entire Functions, Academic Press Inc., New York, 1954. |
[3] | M. Demuth, F. Hanauska, M. Hansmann and G. Katriel, Estimating the number of eigenvalues of linear operators on Banach spaces, J. Funct. Anal., 268 (2015), 1032-1052. doi: 10.1016/j.jfa.2014.11.007. |
[4] | D. Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École. Norm. Sup. (4), 19 (1986), 491-517. doi: 10.24033/asens.1515. |
[5] | N. T. A. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergodic Theory Dynam. Systems, 10 (1990), 347-360. doi: 10.1017/S0143385700005587. |
[6] | M. Jézéquel, Local and global trace formulae for smooth hyperbolic diffeomorphisms, J. Spectr. Theory, 10 (2020), 185-249. doi: 10.4171/JST/290. |
[7] | H. König, Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications, 16, Birkhäuser Verlag, Basel, 1986. doi: 10.1007/978-3-0348-6278-3. |
[8] | W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990). |
[9] | A. Pietsch, Eigenvalues and $s$-Numbers, Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, Cambridge, 1987. |
[10] | M. Pollicott, Meromorphic extensions of generalised zeta functions, Invent. Math., 85 (1986), 147-164. doi: 10.1007/BF01388795. |
[11] | A. Quas and J. Siefken, Ergodic optimization of super-continuous functions on shift spaces, Ergodic Theory Dynam. Systems, 32 (2012), 2071-2082. doi: 10.1017/S0143385711000629. |
[12] | D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242. doi: 10.1007/BF01403069. |
[13] | D. Ruelle, An extension of the theory of Fredholm determinants, Inst. Hautes Études Sci. Publ. Math., 72 (1990), 175-193. doi: 10.1007/BF02699133. |
[14] | F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967. |