We study the dynamics and energy exchanges between a linear oscillator and a nonlinear interaction state for the one dimensional, quintic nonlinear Schrödinger equation. Grébert and Thomann [
Citation: |
[1] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part Ⅰ: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020.![]() ![]() ![]() |
[2] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.
doi: 10.1016/0362-546X(90)90023-A.![]() ![]() ![]() |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1.![]() ![]() ![]() |
[4] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.
doi: 10.1007/s00222-010-0242-2.![]() ![]() ![]() |
[5] |
B. G. Dodson, Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension for low regularity data, Int. Math. Res. Not. IMRN, 2012 (2012), 870-893.
doi: 10.1093/imrn/rnr037.![]() ![]() ![]() |
[6] |
B. Dodson, Global well-posedness and scattering for the defocusing, $L^2$-critical, nonlinear Schrödinger equation when $d = 1$, Amer. J. Math., 138 (2016), 531-569.
doi: 10.1353/ajm.2016.0016.![]() ![]() ![]() |
[7] |
E. Faou, P. Germain and Z. Hani, The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation, J. Amer. Math. Soc., 29 (2016), 915-982.
doi: 10.1090/jams/845.![]() ![]() ![]() |
[8] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.
doi: 10.1016/0022-1236(79)90076-4.![]() ![]() ![]() |
[9] |
B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.
doi: 10.1016/j.anihpc.2012.01.005.![]() ![]() ![]() |
[10] |
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979.
![]() ![]() |
[11] |
M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4757-3845-2.![]() ![]() ![]() |
[12] |
H. Takaoka, Energy transfer model for the derivative nonlinear Schrödinger equations on the torus, Discrete Contin. Dyn. Syst., 37 (2017), 5819-5841.
doi: 10.3934/dcds.2017253.![]() ![]() ![]() |
[13] |
Y. Tsutsumi, $\mathrm{L}^{2}$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.
![]() ![]() |