November  2020, 40(11): 6379-6409. doi: 10.3934/dcds.2020284

Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain

1. 

School of Mathematical Sciences and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Yucheng Wang

Received  January 2020 Revised  June 2020 Published  July 2020

Fund Project: The authors are supported by the National Natural Science Foundation of China (No. 11771284 and No. 11831011)

In this paper, we consider the chemotaxis–shallow water system in a bounded domain $ \Omega\subset\mathbb{R}^2 $. By energy method, we establish the global existence of strong solution with small initial perturbation and obtain the exponential decaying rate of the solution. We divide the bounded domain into interior domain and the domain up to the boundary. In the interior domain, the problem is treated like the Cauchy problem. In the domain up to the boundary, the tangential and normal directions are treated differently. We use different method to get the estimates for the tangential and normal directions.

Citation: Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284
References:
[1]

X. Cao, Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[2]

X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), 39pp. doi: 10.1007/s00526-016-1027-2.  Google Scholar

[3]

J. CheL. ChenB. Duan and Z. Luo, On the existence of local strong solutions to chemotaxis–shallow water system with large data and vacuum, J. Differential Equations, 261 (2016), 6758-6789.  doi: 10.1016/j.jde.2016.09.005.  Google Scholar

[4]

Y. Cho and H. Kim, On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[5]

R. DuanX. Li and Z. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis–Navier–Stokes system, J. Differential Equations, 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[6]

A. Duarte-RodríguezL. C. F. Ferreira and E. J. Villamizar-Roa, Global existence for an attraction-repulsion chemotaxis fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 423-447.  doi: 10.3934/dcdsb.2018180.  Google Scholar

[7]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[8]

Y. Guo and Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 633-683.   Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[11]

S. Ishida, Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 3463-3482.  doi: 10.3934/dcds.2015.35.3463.  Google Scholar

[12]

C. Jin, Global classical solution and stability to a coupled chemotaxis–fluid model with logistic source, Discrete Contin. Dyn. Syst., 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.  Google Scholar

[13]

H.-Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis–Navier–Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[16]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[17]

M. LiuM. Yu and H. Luo, Global weak solution to the chemotaxis–fluid system, J. Math. Res. Appl., 39 (2019), 181-195.   Google Scholar

[18]

N. Masmoudi and F. Rousset, Uniform regularity for the Navier–Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529-575.  doi: 10.1007/s00205-011-0456-5.  Google Scholar

[19]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[20]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[21]

L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl., 202 (1996), 236-258.  doi: 10.1006/jmaa.1996.0315.  Google Scholar

[22]

Q. Tao and Z. Yao, Global existence and large time behavior for a two-dimensional chemotaxis–shallow water system, J. Differential Equations, 265 (2018), 3092-3129.  doi: 10.1016/j.jde.2018.05.002.  Google Scholar

[23]

R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[24]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blow-up in a finite and the inifinite time, Methods Appl. Anal, 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[25]

W. Wang and Y. Wang, The $L^p$ decay estimates for the chemotaxis–shallow water system, J. Math. Anal. Appl., 474 (2019), 640-665.  doi: 10.1016/j.jmaa.2019.01.066.  Google Scholar

[26]

Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis–Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254.  doi: 10.3934/dcdsb.2015.20.3235.  Google Scholar

[27]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[28]

M. Winkler, Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[30]

M. Winkler, Stabilization in a two-dimensional chemotaxis–Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[31]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[32]

M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis–Stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.  doi: 10.1007/s00028-018-0440-8.  Google Scholar

[33]

M. Winkler, Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(–stokes) systems?, Int. Math. Res. Not., (2019). doi: 10.1093/imrn/rnz056.  Google Scholar

[34]

Q. Zhang and Y. Li, Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.  doi: 10.3934/dcdsb.2015.20.2751.  Google Scholar

show all references

References:
[1]

X. Cao, Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[2]

X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), 39pp. doi: 10.1007/s00526-016-1027-2.  Google Scholar

[3]

J. CheL. ChenB. Duan and Z. Luo, On the existence of local strong solutions to chemotaxis–shallow water system with large data and vacuum, J. Differential Equations, 261 (2016), 6758-6789.  doi: 10.1016/j.jde.2016.09.005.  Google Scholar

[4]

Y. Cho and H. Kim, On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[5]

R. DuanX. Li and Z. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis–Navier–Stokes system, J. Differential Equations, 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[6]

A. Duarte-RodríguezL. C. F. Ferreira and E. J. Villamizar-Roa, Global existence for an attraction-repulsion chemotaxis fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 423-447.  doi: 10.3934/dcdsb.2018180.  Google Scholar

[7]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[8]

Y. Guo and Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 633-683.   Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[11]

S. Ishida, Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 3463-3482.  doi: 10.3934/dcds.2015.35.3463.  Google Scholar

[12]

C. Jin, Global classical solution and stability to a coupled chemotaxis–fluid model with logistic source, Discrete Contin. Dyn. Syst., 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.  Google Scholar

[13]

H.-Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis–Navier–Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[16]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[17]

M. LiuM. Yu and H. Luo, Global weak solution to the chemotaxis–fluid system, J. Math. Res. Appl., 39 (2019), 181-195.   Google Scholar

[18]

N. Masmoudi and F. Rousset, Uniform regularity for the Navier–Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529-575.  doi: 10.1007/s00205-011-0456-5.  Google Scholar

[19]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[20]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[21]

L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl., 202 (1996), 236-258.  doi: 10.1006/jmaa.1996.0315.  Google Scholar

[22]

Q. Tao and Z. Yao, Global existence and large time behavior for a two-dimensional chemotaxis–shallow water system, J. Differential Equations, 265 (2018), 3092-3129.  doi: 10.1016/j.jde.2018.05.002.  Google Scholar

[23]

R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[24]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blow-up in a finite and the inifinite time, Methods Appl. Anal, 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[25]

W. Wang and Y. Wang, The $L^p$ decay estimates for the chemotaxis–shallow water system, J. Math. Anal. Appl., 474 (2019), 640-665.  doi: 10.1016/j.jmaa.2019.01.066.  Google Scholar

[26]

Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis–Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254.  doi: 10.3934/dcdsb.2015.20.3235.  Google Scholar

[27]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[28]

M. Winkler, Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[30]

M. Winkler, Stabilization in a two-dimensional chemotaxis–Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[31]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[32]

M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis–Stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.  doi: 10.1007/s00028-018-0440-8.  Google Scholar

[33]

M. Winkler, Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(–stokes) systems?, Int. Math. Res. Not., (2019). doi: 10.1093/imrn/rnz056.  Google Scholar

[34]

Q. Zhang and Y. Li, Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.  doi: 10.3934/dcdsb.2015.20.2751.  Google Scholar

[1]

Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020097

[2]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[3]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020230

[4]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[5]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020198

[6]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[7]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[8]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[9]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[10]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[11]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[12]

Manuel Núñez. Existence of solutions of the equations of electron magnetohydrodynamics in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1019-1034. doi: 10.3934/dcds.2010.26.1019

[13]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[14]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[15]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[16]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[17]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[18]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[19]

Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797

[20]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

2019 Impact Factor: 1.338

Article outline

[Back to Top]