• Previous Article
    A unified approach for energy scattering for focusing nonlinear Schrödinger equations
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain
November  2020, 40(11): 6411-6440. doi: 10.3934/dcds.2020285

Identifying varying magnetic anomalies using geomagnetic monitoring

1. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

2. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR, China

3. 

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

* Corresponding author: Hongyu Liu

Received  January 2020 Revised  June 2020 Published  July 2020

We are concerned with the inverse problem of identifying magnetic anomalies with varying parameters beneath the Earth using geomagnetic monitoring. Observations of the change in Earth's magnetic field–the secular variation–provide information about the anomalies as well as their variations. In this paper, we rigorously establish the unique recovery results for this magnetic anomaly detection problem. We show that one can uniquely recover the locations, the variation parameters including the growth or decaying rates as well as their material parameters of the anomalies. This paper extends the existing results in [9] by two of the authors to the more practical and challenging scenario with varying anomalies.

Citation: Youjun Deng, Hongyu Liu, Wing-Yan Tsui. Identifying varying magnetic anomalies using geomagnetic monitoring. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6411-6440. doi: 10.3934/dcds.2020285
References:
[1]

H. AmmariY. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal., 220 (2016), 109-153.  doi: 10.1007/s00205-015-0928-0.  Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors, Applied Mathematical Sciences, 162, Springer, New York, 2007. doi: 10.1007/978-0-387-71566-7.  Google Scholar

[3]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861.  doi: 10.1137/S0036141098343604.  Google Scholar

[4]

H. AmmariM. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. Ⅱ. The full Maxwell equations, J. Math. Pures Appl. (9), 80 (2001), 769-814.  doi: 10.1016/S0021-7824(01)01217-X.  Google Scholar

[5] G. BackusR. Parker and and C. Constable, Foundations of Geomagnetism, Cambridge University Press, 1996.   Google Scholar
[6]

A. Coghlan, Molten Iron River Discovered Speeding Beneath Russia and Canada, 2016. Available from: https://www.newscientist.com/article/2116536-molten-iron-river-discovered-speeding-beneath-russia-and-canada. Google Scholar

[7]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[8]

G. Dassios, Low-frequency scattering, in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Academic Press, 2002, 230-244. doi: 10.1016/B978-012613760-6/50014-0.  Google Scholar

[9]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153-187.  doi: 10.1007/s00205-018-1276-7.  Google Scholar

[10]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.  doi: 10.1007/s00205-019-01429-x.  Google Scholar

[11]

Y. DengH. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.  doi: 10.1016/j.jde.2019.03.009.  Google Scholar

[12]

Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.  Google Scholar

[13]

R. E. Kleinman, Low frequency electromagnetic scattering, in Electromagnetic Scattering, Academic Press, New York-London, 1978, 1-28.  Google Scholar

[14]

R. Leis, Initial-Boundary Value Problems in Mathematical Physics, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. doi: 10.1007/978-3-663-10649-4.  Google Scholar

[15]

H. LiuL. Rondi and J. Xiao, Mosco convergence for $H({\rm curl})$ spaces, higher integrability for Maxwell's equations, and stability in direct and inverse EM scattering problems, J. Eur. Math. Soc. (JEMS), 21 (2019), 2945-2993.  doi: 10.4171/JEMS/895.  Google Scholar

[16]

P. W. LivermoreR. Hollerbach and C. C. Finlay, An accelerating high-latitude jet in Earth's core, Nature Geoscience, 10 (2017), 62-68.  doi: 10.1038/ngeo2859.  Google Scholar

[17]

J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 144, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[18]

R. H. Torres, Maxwell's equations and dielectric obstacles with Lipschitz boundaries, J. London Math. Soc. (2), 57 (1998), 157-169.  doi: 10.1112/S0024610798005900.  Google Scholar

[19]

The Giant Underground Iron River Between Russia and Canada is 3 Times Faster, 2016. Available from: http://www.ultimatescience.org/giant-underground-iron-river-russia-canada-3-times-faster. Google Scholar

[20]

Wikipedia, https://en.wikipedia.org/wiki/Magnetic_anomaly_detector. Google Scholar

show all references

References:
[1]

H. AmmariY. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal., 220 (2016), 109-153.  doi: 10.1007/s00205-015-0928-0.  Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors, Applied Mathematical Sciences, 162, Springer, New York, 2007. doi: 10.1007/978-0-387-71566-7.  Google Scholar

[3]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861.  doi: 10.1137/S0036141098343604.  Google Scholar

[4]

H. AmmariM. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. Ⅱ. The full Maxwell equations, J. Math. Pures Appl. (9), 80 (2001), 769-814.  doi: 10.1016/S0021-7824(01)01217-X.  Google Scholar

[5] G. BackusR. Parker and and C. Constable, Foundations of Geomagnetism, Cambridge University Press, 1996.   Google Scholar
[6]

A. Coghlan, Molten Iron River Discovered Speeding Beneath Russia and Canada, 2016. Available from: https://www.newscientist.com/article/2116536-molten-iron-river-discovered-speeding-beneath-russia-and-canada. Google Scholar

[7]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[8]

G. Dassios, Low-frequency scattering, in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Academic Press, 2002, 230-244. doi: 10.1016/B978-012613760-6/50014-0.  Google Scholar

[9]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153-187.  doi: 10.1007/s00205-018-1276-7.  Google Scholar

[10]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.  doi: 10.1007/s00205-019-01429-x.  Google Scholar

[11]

Y. DengH. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.  doi: 10.1016/j.jde.2019.03.009.  Google Scholar

[12]

Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.  Google Scholar

[13]

R. E. Kleinman, Low frequency electromagnetic scattering, in Electromagnetic Scattering, Academic Press, New York-London, 1978, 1-28.  Google Scholar

[14]

R. Leis, Initial-Boundary Value Problems in Mathematical Physics, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. doi: 10.1007/978-3-663-10649-4.  Google Scholar

[15]

H. LiuL. Rondi and J. Xiao, Mosco convergence for $H({\rm curl})$ spaces, higher integrability for Maxwell's equations, and stability in direct and inverse EM scattering problems, J. Eur. Math. Soc. (JEMS), 21 (2019), 2945-2993.  doi: 10.4171/JEMS/895.  Google Scholar

[16]

P. W. LivermoreR. Hollerbach and C. C. Finlay, An accelerating high-latitude jet in Earth's core, Nature Geoscience, 10 (2017), 62-68.  doi: 10.1038/ngeo2859.  Google Scholar

[17]

J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 144, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[18]

R. H. Torres, Maxwell's equations and dielectric obstacles with Lipschitz boundaries, J. London Math. Soc. (2), 57 (1998), 157-169.  doi: 10.1112/S0024610798005900.  Google Scholar

[19]

The Giant Underground Iron River Between Russia and Canada is 3 Times Faster, 2016. Available from: http://www.ultimatescience.org/giant-underground-iron-river-russia-canada-3-times-faster. Google Scholar

[20]

Wikipedia, https://en.wikipedia.org/wiki/Magnetic_anomaly_detector. Google Scholar

[1]

Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems & Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015

[2]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[3]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[4]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[5]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems & Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[6]

Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783

[7]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems & Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

[8]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[9]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[10]

Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems & Imaging, 2020, 14 (5) : 797-818. doi: 10.3934/ipi.2020037

[11]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[12]

H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch. Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences & Engineering, 2014, 11 (3) : 427-448. doi: 10.3934/mbe.2014.11.427

[13]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems & Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[14]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[15]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[16]

Wolfgang Arendt, Daniel Daners. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 21-39. doi: 10.3934/dcds.2008.21.21

[17]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[18]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[19]

Plamen Stefanov, Gunther Uhlmann. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. Inverse Problems & Imaging, 2013, 7 (4) : 1367-1377. doi: 10.3934/ipi.2013.7.1367

[20]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]