\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces

  • * Corresponding author appreciates Taoufik Hmidi from Rennes 1 University for the fruitful discussions on the subject with the occasion of RAMA 11 organized by Sidi bel Abbess University, Algeria, November 2019. A particular greeting dedicates to the referee for the enormous efforts, careful reading and his appreciation of the work

    * Corresponding author appreciates Taoufik Hmidi from Rennes 1 University for the fruitful discussions on the subject with the occasion of RAMA 11 organized by Sidi bel Abbess University, Algeria, November 2019. A particular greeting dedicates to the referee for the enormous efforts, careful reading and his appreciation of the work

This work has been done while the second author is a PhD student at the University of Côte d’Azur-Nice-France, under the supervision of F. Planchon and P. Dreyfuss, in particular the second author would like to thank his supervisors, and the LJAD direction

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The contribution of this paper will be focused on the global existence and uniqueness topic in three-dimensional case of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. We aim at deriving analogous results for the classical two-dimensional and three-dimensional axisymmetric Navier-Stokes equations recently obtained in [19,20]. Roughly speaking, we show essentially that if the initial data $ (v_0, \rho_0) $ is axisymmetric and $ (\omega_0, \rho_0) $ belongs to the critical space $ L^1(\Omega)\times L^1( \mathbb{R}^3) $, with $ \omega_0 $ is the initial vorticity associated to $ v_0 $ and $ \Omega = \{(r, z)\in \mathbb{R}^2:r>0\} $, then the viscous Boussinesq system has a unique global solution.

    Mathematics Subject Classification: Primary: 76D03, 76D05; Secondary: 35B33, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Abidi, Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes, Bull. Sci. Math., 132 (2008), 592-624.  doi: 10.1016/j.bulsci.2007.10.001.
    [2] H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220.  doi: 10.1016/j.jde.2006.10.008.
    [3] H. AbidiT. Hmidi and S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dyn. Syst., 29 (2011), 737-756.  doi: 10.3934/dcds.2011.29.737.
    [4] J. T. BealeT. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$D-Euler equations, Comm. Math. Phys., 94 (1984), 61-66.  doi: 10.1007/BF01212349.
    [5] M. Ben-Artzi, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal., 128 (1994), 329-358.  doi: 10.1007/BF00387712.
    [6] H. Brezis, Remarks on the preceding paper by M. Ben-Artzi: "Global solutions of two-dimensional Navier-Stokes and Euler equations", Arch. Rational Mech. Anal., 128 (1994), 359-360.  doi: 10.1007/BF00387713.
    [7] J. R. Cannon and E. DiBenedetto, The initial value problem for the Boussinesq equations with data in $L^p$, in Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math., 771, Springer, Berlin, 1980,129–144. doi: 10.1007/BFb0086903.
    [8] D. Chae, Global regularity for the $2$D-Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.
    [9] J.-Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Comm. Partial Differential Equations, 21 (1996), 1771-1779.  doi: 10.1080/03605309608821245.
    [10] J.-Y. CheminPerfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 14, The Clarendon Press, Oxford University Press, New York, 1998. 
    [11] G.-H. Cottet, Equations de Navier-Stokes dans le plan avec tourbillon initial mesure, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 105-108. 
    [12] R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290 (2009), 1-14.  doi: 10.1007/s00220-009-0821-5.
    [13] R. Danchin and M. Paicu, Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261-309.  doi: 10.24033/bsmf.2557.
    [14] P. Dreyfuss and H. Houamed, Uniqueness result for Navier-Stokes-Boussinesq equations with horizontal dissipation, preprint, arXiv: 1904.00437.
    [15] W. E and C.-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids, 6 (1994), 49-58.  doi: 10.1063/1.868044.
    [16] H. Feng and V. ${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over S} }}$verák, On the Cauchy problem for axi-symmetric vortex rings, Arch. Rational Mech. Anal., 215 (2015), 89-123.  doi: 10.1007/s00205-014-0775-4.
    [17] H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I., Arch. Rational Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.
    [18] I. Gallagher and T. Gallay, Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., 332 (2005), 287-327.  doi: 10.1007/s00208-004-0627-x.
    [19] T. Gallay, Stability and interaction of vortices in two-dimensional viscous flows, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 1091-1131.  doi: 10.3934/dcdss.2012.5.1091.
    [20] T. Gallay and V. ${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over S} }}$verák, Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations, Confluentes Math., 7 (2015), 67-92.  doi: 10.5802/cml.25.
    [21] T. Gallay and C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys., 255 (2005), 97-129.  doi: 10.1007/s00220-004-1254-9.
    [22] P. Germain, Équations de Navier-Stokes dans $ \mathbb{R}^2$: Existence et comportement asymptotique de solutions d'énergie infinie, Bull. Sci. Math., 130 (2006), 123-151.  doi: 10.1016/j.bulsci.2005.06.004.
    [23] Y. GigaT. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250.  doi: 10.1007/BF00281355.
    [24] B. L. Guo, Spectral method for solving two-dimensional Newton-Boussinesq equation, Acta Math. Appl. Sinica, 5 (1989), 208-218.  doi: 10.1007/BF02006004.
    [25] T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480. 
    [26] T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.  doi: 10.1512/iumj.2009.58.3590.
    [27] T. HmidiS. Keraani and F. Rousset, Global well-posedness for an Euler-Boussinesq system with critical dissipation, Comm. Partial Differential Equations, 36 (2011), 420-445.  doi: 10.1080/03605302.2010.518657.
    [28] T. HmidiS. Keraani and F. Rousset, Global well-posedness for a Navier-Stokes-Boussinesq system with critical dissipation, J. Differential Equations, 249 (2010), 2147-2174.  doi: 10.1016/j.jde.2010.07.008.
    [29] T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1227-1246.  doi: 10.1016/j.anihpc.2010.06.001.
    [30] T. Hmidi and M. Zerguine, On the global well-posedness of the Euler-Boussinesq system with fractional dissipation, Phys. D, 239 (2010), 1387-1401.  doi: 10.1016/j.physd.2009.12.009.
    [31] T. Hmidi and M. Zerguine, Inviscid limit for axisymmetric Navier-Stokes system, Differential Integral Equations, 22 (2009), 1223-1246. 
    [32] T. Hmidi and M. Zerguine, Vortex patch for stratified Euler equations, Commun. Math. Sci., 12 (2014), 1541-1563.  doi: 10.4310/CMS.2014.v12.n8.a8.
    [33] T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.
    [34] H. Houamed and M. Zerguine, On the global solvability of the axisymmetric Boussinesq system with critical regularity, Nonlinear Anal., 200 (2020), 26pp. doi: 10.1016/j.na.2020.112003.
    [35] O. A. Ladyženskaja, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155-177. 
    [36] A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the $2$D-Boussinesq system with anisotropic viscosity without heat diffusion, J. Differential Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.
    [37] P.-G. Lemarié-Rieusset, Recent Developments in the Navier Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.
    [38] X. LiuM. Wang and Z. Zhang, Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech., 12 (2010), 280-292.  doi: 10.1007/s00021-008-0286-x.
    [39] C. Miao and L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 707-735.  doi: 10.1007/s00030-011-0114-5.
    [40] C. Miao and X. Zheng, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl. (9), 101 (2014), 842-872.  doi: 10.1016/j.matpur.2013.10.007.
    [41] C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys., 321 (2013), 33-67.  doi: 10.1007/s00220-013-1721-2.
    [42] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4650-3.
    [43] J. C. Robinson, J. L. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cambridge Studies in Advanced Mathematics, 157, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781139095143.
    [44] V. ${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over S} }}$veràk, Selected Topics in Fluid Mechanics. Course notes, (2011).
    [45] M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-69.  doi: 10.1016/0021-8928(68)90147-0.
    [46] M. Zerguine, The regular vortex patch problem for stratified Euler equations with critical fractional dissipation, J. Evol. Equ., 15 (2015), 667-698.  doi: 10.1007/s00028-015-0277-3.
  • 加载中
SHARE

Article Metrics

HTML views(2447) PDF downloads(265) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return