\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments

  • * Corresponding author: Xiaoqing He

    * Corresponding author: Xiaoqing He 
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • Previously in [14], we considered a diffusive logistic equation with two parameters, $ r(x) $ – intrinsic growth rate and $ K(x) $ – carrying capacity. We investigated and compared two special cases of the way in which $ r(x) $ and $ K(x) $ are related for both the logistic equations and the corresponding Lotka-Volterra competition-diffusion systems. In this paper, we continue to study the Lotka-Volterra competition-diffusion system with general intrinsic growth rates and carrying capacities for two competing species in heterogeneous environments. We establish the main result that determines the global dynamics of the system under a general criterion. Furthermore, when the ratios of the intrinsic growth rate to the carrying capacity for each species are proportional — such ratios can also be interpreted as the competition coefficients — this criterion reduces to what we obtained in [18]. We also study the detailed dynamics in terms of dispersal rates for such general case. On the other hand, when the two ratios are not proportional, our results in [14] show that the criterion in [18] cannot be fully recovered as counterexamples exist. This indicates the importance and subtleties of the roles of heterogeneous competition coefficients in the dynamics of the Lotka-Volterra competition-diffusion systems. Our results apply to competition-diffusion-advection systems as well. (See Corollary 5.1 in the last section.)

    Mathematics Subject Classification: Primary: 92D25, 92D40, 35K57, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Global dynamics of system (4) with $ r_i/\xi_i\not\equiv{\rm{const}} $, $ i = 1, 2 $. See Theorem 1.3

    Figure 2.  Shapes of $ \Sigma_U $ and $ \Sigma_- $ for Theorem 1.4 as illustration

    Figure 3.  Another scenario for Theorem 1.4. See also Theorem 4.2(ⅰ) for details

    Figure 4.  Shapes of $ \Sigma_U $, $ \Sigma_V $ and $ \Sigma_- $ for Theorem 1.5 as illustration

  • [1] I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017) doi: 10.1090/memo/1161.
    [2] I. AverillD. Munther and Y. Lou, On several conjectures from evolution of dispersal, J. Biol. Dyn., 6 (2012), 117-130.  doi: 10.1080/17513758.2010.529169.
    [3] X. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersals I: Symmetric kernels, Calc. Var. Partial Differential Equations, 57 (2018), 35pp. doi: 10.1007/s00526-018-1419-6.
    [4] K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.
    [5] R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.  doi: 10.1017/S030821050001876X.
    [6] R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments. II, SIAM J. Math. Anal., 22 (1991), 1043-1064.  doi: 10.1137/0522068.
    [7] R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.  doi: 10.1007/s002850050122.
    [8] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.
    [9] R. S. CantrellC. Cosner and Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng., 7 (2010), 17-36.  doi: 10.3934/mbe.2010.7.17.
    [10] X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst. A, 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.
    [11] D. DeAngelisW.-M. Ni and B. Zhang, Dispersal and spatial heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.
    [12] D. DeAngelisW.-M. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.  doi: 10.1007/s12080-016-0302-3.
    [13] J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.
    [14] Q. Guo, X. He and W.-M. Ni, On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments, J. Math. Biol., (2020). doi: 10.1007/s00285-020-01507-9.
    [15] X. HeK.-Y. LamY. Lou and W.-M. Ni, Dynamics of a consumer-resource reaction-diffusion model, J. Math. Biol., 78 (2019), 1605-1636.  doi: 10.1007/s00285-018-1321-z.
    [16] X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.
    [17] X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations, 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.
    [18] X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity. I, Comm. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.
    [19] X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), 20pp. doi: 10.1007/s00526-016-0964-0.
    [20] X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations, 56 (2017), 26pp. doi: 10.1007/s00526-017-1234-5.
    [21] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow; copublished in the US with John Wiley & Sons, Inc., New York), 1991.
    [22] P. Hess and S. Senn, Another approach to elliptic eigenvalue problems with respect to indefinite weight functions, in Nonlinear Analysis and Optimization, Lecture Notes in Math., 1107, Springer, Berlin, 1984,106–114. doi: 10.1007/BFb0101496.
    [23] M. W. Hirsch and H. L. Smith, Asymptotically stable equilibria for monotone semiflows, Discrete Contin. Dyn. Syst., 14 (2006), 385-398.  doi: 10.3934/dcds.2006.14.385.
    [24] V. HutsonY. Lou and and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97-136.  doi: 10.1006/jdeq.2001.4157.
    [25] M. G. Kre${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Matem. Nauk (N. S.), 3 (1948), 3-95. 
    [26] K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.
    [27] K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.  doi: 10.1137/120869481.
    [28] K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336.
    [29] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.
    [30] Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences, Lecture Notes in Math., 1922, Springer, Berlin, 2008,171–205. doi: 10.1007/978-3-540-74331-6_5.
    [31] Y. Lou and E. Yanagida, Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math., 23 (2006), 275-292.  doi: 10.1007/BF03167595.
    [32] Y. LouD. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.
    [33] Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019) 47–82. doi: 10.1016/j.matpur.2018.06.010.
    [34] J. Mallet, The struggle for existence: How the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution,and speciation, Evolutionary Ecology Research, 14 (2012), 627-665. 
    [35] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.
    [36] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 979-1000.  doi: 10.1512/iumj.1972.21.21079.
    [37] S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1981/82), 459-470.  doi: 10.1007/BF01453979.
    [38] H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.
    [39] D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.  doi: 10.1016/j.jde.2019.09.003.
    [40] B. Zhang, D. DeAngelis, W.-M. Ni, Y. Wang, L. Zhai, A. Kula, S. Xu and J. D. Van Dyken, Effect of stressors on the carrying capacity of spatially-distributed metapopulations, Amer. Naturalist, (2020). doi: 10.1086/709293.
    [41] B. ZhangA. KulaK. MackL. ZhaiA. RyceW.-M. NiD. DeAngelis and J. D. Van Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Lett., 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.
    [42] B. ZhangX. LiuD. L. DeAngelisW.-M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy heterogeneous environment: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.
    [43] P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(242) PDF downloads(561) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return