February  2021, 41(2): 621-656. doi: 10.3934/dcds.2020291

Singular solutions of a Lane-Emden system

1. 

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

2. 

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Postal Code: 34149-16818, Qazvin, Iran

* Corresponding author: A. Razani

This work was done when the second author visited the Department of Mathematics, University of Manitoba on a sabbatical leave from Imam Khomeini International University. He appreciates the Department of Mathematics, University of Manitoba, for the hospitality and Prof. C. Cowan for his support.

Received  November 2019 Revised  May 2020 Published  August 2020

In this work we consider the existence of positive singular solutions
$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u_1 & = & \lambda_1 | \nabla u_2|^p \qquad \mbox{ in } \Omega, \\ \hfill -\Delta u_2 & = & \lambda_2 | \nabla u_1|^q \qquad \mbox{ in } \Omega, \\ \hfill u_1 = u_2 & = & 0 \hfill \mbox{ on } \partial \Omega, \end{array}\right.\;\;\;\;\;\;\;(1) \end{equation} $
where
$ \Omega $
is small
$ C^2 $
perturbation of the unit ball
$ B_1 $
in
$ \mathbb{R}^N $
and
$ \lambda_i $
are positive constants. Under suitable conditions on
$ p $
and
$ q $
we prove the existence of positive singular solutions of (1). We also examine the case where one or both of
$ u_1,u_2 $
are Hölder continuous.
Citation: Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291
References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar

[3]

D. ArcoyaL. BoccardoT. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar

[4]

D. ArcoyaJ. CarmonaT. LeonoriP. J. Martinez-AparicioL. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.  Google Scholar

[6]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.  Google Scholar

[7]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar

[8]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53.   Google Scholar

[9]

M.-F. Bidaut-VéronM. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.  Google Scholar

[10]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.  Google Scholar

[11]

J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar

[12]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar

[13]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.  Google Scholar

[14]

J. DávilaM. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar

[15]

J. DávilaM. del PinoM. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.  Google Scholar

[16]

J. DávilaM. del PinoM. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar

[17]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[18]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.  Google Scholar

[19]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[20]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar

[21]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar

[22]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..  Google Scholar

[23]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[24]

D. GiachettiF. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar

[25]

D. GiachettiF. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948.   Google Scholar

[26]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[27]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[28]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar

[29]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar

[30]

J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar

[31]

D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.  Google Scholar

[32]

P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.  Google Scholar

[33]

M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.  Google Scholar

[34]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar

[35]

P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.  Google Scholar

[36]

P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.  Google Scholar

[37]

F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar

[38]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[39]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[40]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar

[41]

E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.  Google Scholar

[42]

M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[43]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

show all references

References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar

[3]

D. ArcoyaL. BoccardoT. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar

[4]

D. ArcoyaJ. CarmonaT. LeonoriP. J. Martinez-AparicioL. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.  Google Scholar

[6]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.  Google Scholar

[7]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar

[8]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53.   Google Scholar

[9]

M.-F. Bidaut-VéronM. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.  Google Scholar

[10]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.  Google Scholar

[11]

J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar

[12]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar

[13]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.  Google Scholar

[14]

J. DávilaM. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar

[15]

J. DávilaM. del PinoM. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.  Google Scholar

[16]

J. DávilaM. del PinoM. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar

[17]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[18]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.  Google Scholar

[19]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[20]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar

[21]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar

[22]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..  Google Scholar

[23]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[24]

D. GiachettiF. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar

[25]

D. GiachettiF. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948.   Google Scholar

[26]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[27]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[28]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar

[29]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar

[30]

J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar

[31]

D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.  Google Scholar

[32]

P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.  Google Scholar

[33]

M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.  Google Scholar

[34]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar

[35]

P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.  Google Scholar

[36]

P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.  Google Scholar

[37]

F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar

[38]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[39]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[40]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar

[41]

E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.  Google Scholar

[42]

M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[43]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

[1]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[5]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[8]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[9]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[10]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[11]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[13]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[14]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[15]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[19]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[20]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (127)
  • HTML views (240)
  • Cited by (2)

Other articles
by authors

[Back to Top]