# American Institute of Mathematical Sciences

February  2021, 41(2): 621-656. doi: 10.3934/dcds.2020291

## Singular solutions of a Lane-Emden system

 1 Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 2 Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Postal Code: 34149-16818, Qazvin, Iran

* Corresponding author: A. Razani

This work was done when the second author visited the Department of Mathematics, University of Manitoba on a sabbatical leave from Imam Khomeini International University. He appreciates the Department of Mathematics, University of Manitoba, for the hospitality and Prof. C. Cowan for his support.

Received  November 2019 Revised  May 2020 Published  August 2020

In this work we consider the existence of positive singular solutions
 $$$\left\{ \begin{array}{lcl} \hfill -\Delta u_1 & = & \lambda_1 | \nabla u_2|^p \qquad \mbox{ in } \Omega, \\ \hfill -\Delta u_2 & = & \lambda_2 | \nabla u_1|^q \qquad \mbox{ in } \Omega, \\ \hfill u_1 = u_2 & = & 0 \hfill \mbox{ on } \partial \Omega, \end{array}\right.$$$
where
 $\Omega$
is small
 $C^2$
perturbation of the unit ball
 $B_1$
in
 $\mathbb{R}^N$
and
 $\lambda_i$
are positive constants. Under suitable conditions on
 $p$
and
 $q$
we prove the existence of positive singular solutions of (1). We also examine the case where one or both of
 $u_1,u_2$
are Hölder continuous.
Citation: Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291
##### References:
 [1] A. Aghajani, C. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar [2] A. Aghajani, C. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar [3] D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar [4] D. Arcoya, J. Carmona, T. Leonori, P. J. Martinez-Aparicio, L. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar [5] D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.  Google Scholar [6] D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.  Google Scholar [7] A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar [8] M.-F. Bidaut Véron, M. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53.   Google Scholar [9] M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.  Google Scholar [10] M.-F. Bidaut Véron, M. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.  Google Scholar [11] J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar [12] J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar [13] C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.  Google Scholar [14] J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar [15] J. Dávila, M. del Pino, M. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.  Google Scholar [16] J. Dávila, M. del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar [17] J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar [18] M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.  Google Scholar [19] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar [20] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar [21] V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar [22] V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..  Google Scholar [23] M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar [24] D. Giachetti, F. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar [25] D. Giachetti, F. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948.   Google Scholar [26] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar [27] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar [28] N. Grenon, F. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar [29] N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar [30] J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar [31] D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.  Google Scholar [32] P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.  Google Scholar [33] M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.  Google Scholar [34] R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar [35] P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.  Google Scholar [36] P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.  Google Scholar [37] F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar [38] D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar [39] S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar [40] A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar [41] E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.  Google Scholar [42] M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar [43] Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

show all references

##### References:
 [1] A. Aghajani, C. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar [2] A. Aghajani, C. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar [3] D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar [4] D. Arcoya, J. Carmona, T. Leonori, P. J. Martinez-Aparicio, L. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar [5] D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.  Google Scholar [6] D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.  Google Scholar [7] A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar [8] M.-F. Bidaut Véron, M. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53.   Google Scholar [9] M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.  Google Scholar [10] M.-F. Bidaut Véron, M. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.  Google Scholar [11] J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar [12] J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212.   Google Scholar [13] C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.  Google Scholar [14] J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar [15] J. Dávila, M. del Pino, M. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.  Google Scholar [16] J. Dávila, M. del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar [17] J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar [18] M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.  Google Scholar [19] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar [20] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar [21] V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar [22] V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..  Google Scholar [23] M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar [24] D. Giachetti, F. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar [25] D. Giachetti, F. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948.   Google Scholar [26] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar [27] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar [28] N. Grenon, F. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar [29] N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar [30] J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar [31] D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.  Google Scholar [32] P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.  Google Scholar [33] M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.  Google Scholar [34] R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar [35] P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.  Google Scholar [36] P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.  Google Scholar [37] F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar [38] D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar [39] S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar [40] A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar [41] E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.  Google Scholar [42] M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar [43] Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar
 [1] Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 [2] Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 [3] Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436 [4] Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 [5] Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448 [6] Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 [7] Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345 [8] Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379 [9] Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469 [10] Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 [11] Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 [12] Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 [13] Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 [14] Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445 [15] Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318 [16] Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 [17] Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 [18] Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 [19] Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 [20] Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.338

Article outline