• Previous Article
    On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property
  • DCDS Home
  • This Issue
  • Next Article
    Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps
doi: 10.3934/dcds.2020292

Uniform stability estimate for the Vlasov-Poisson-Boltzmann system

School of Science, Wuhan Institute of Technology, Wuhan, 430072, China, School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

*

Received  February 2020 Revised  May 2020 Published  August 2020

This paper is concerned with the uniform stability estimate to the Cauchy problem of the Vlasov-Poisson-Boltzmann system. Our analysis is based on compensating function introduced by Kawashima and the standard energy method.

Citation: Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020292
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.   Google Scholar
[2]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[3]

L. Desvillettes and J. Dolbeault, On long time asymptotics of the Vlasov-Poisson-Boltzmann equation, Comm. Partial Differ. Eqs., 16 (1991), 451-489.  doi: 10.1080/03605309108820765.  Google Scholar

[4]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^ 3$., Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[5]

R. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[6]

R. DuanT. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Diff. Eqs., 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[7]

R. DuanT. Yang and C. Zhu, Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum, Discrete Contin. Dyn. Syst., 16 (2006), 253-277.  doi: 10.3934/dcds.2006.16.253.  Google Scholar

[8]

R. Duan and S. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[9]

R. DuanT. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[10]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Philadelphia, PA, SIAM, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[11]

R. T. Glassey and W. A. Strauss, Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system, Discrete Contin. Dynam. Systems-A, 5 (1999), 457-472.  doi: 10.3934/dcds.1999.5.457.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[14]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[15]

Y. Guo and J. Jang, Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.  doi: 10.1007/s00220-010-1089-5.  Google Scholar

[16]

S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.  doi: 10.1007/BF03167846.  Google Scholar

[17]

P.-L. Lions, On kinetic equations, In Proceedings of International Congress of Mathematician, Vol. Ⅰ, Ⅱ (Kyoto, 1990), 1173–1185, Math. Soc. Japan, Tokyo, 1991.  Google Scholar

[18]

S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210 (2000), 447-466.  doi: 10.1007/s002200050787.  Google Scholar

[19]

X. Wang and H. Shi, Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $\mathbb{R}^3$, Appl. Anal., 97 (2018), 1933-1959.  doi: 10.1080/00036811.2017.1344225.  Google Scholar

[20]

T. YangH. Yu and H. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[21]

T. Yang and H. Yu, Optimal convergence rates of classical so lutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.  Google Scholar

[22]

T. Yang and H. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.   Google Scholar
[2]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[3]

L. Desvillettes and J. Dolbeault, On long time asymptotics of the Vlasov-Poisson-Boltzmann equation, Comm. Partial Differ. Eqs., 16 (1991), 451-489.  doi: 10.1080/03605309108820765.  Google Scholar

[4]

R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^ 3$., Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[5]

R. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[6]

R. DuanT. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Diff. Eqs., 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[7]

R. DuanT. Yang and C. Zhu, Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum, Discrete Contin. Dyn. Syst., 16 (2006), 253-277.  doi: 10.3934/dcds.2006.16.253.  Google Scholar

[8]

R. Duan and S. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[9]

R. DuanT. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[10]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Philadelphia, PA, SIAM, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[11]

R. T. Glassey and W. A. Strauss, Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system, Discrete Contin. Dynam. Systems-A, 5 (1999), 457-472.  doi: 10.3934/dcds.1999.5.457.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[14]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[15]

Y. Guo and J. Jang, Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.  doi: 10.1007/s00220-010-1089-5.  Google Scholar

[16]

S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.  doi: 10.1007/BF03167846.  Google Scholar

[17]

P.-L. Lions, On kinetic equations, In Proceedings of International Congress of Mathematician, Vol. Ⅰ, Ⅱ (Kyoto, 1990), 1173–1185, Math. Soc. Japan, Tokyo, 1991.  Google Scholar

[18]

S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210 (2000), 447-466.  doi: 10.1007/s002200050787.  Google Scholar

[19]

X. Wang and H. Shi, Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $\mathbb{R}^3$, Appl. Anal., 97 (2018), 1933-1959.  doi: 10.1080/00036811.2017.1344225.  Google Scholar

[20]

T. YangH. Yu and H. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[21]

T. Yang and H. Yu, Optimal convergence rates of classical so lutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.  Google Scholar

[22]

T. Yang and H. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

[1]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[2]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[3]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[4]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[5]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[6]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[7]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[8]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[9]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[10]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[11]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[12]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[13]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[14]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[15]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[16]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[17]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[18]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[19]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[20]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

2019 Impact Factor: 1.338

Article outline

[Back to Top]