• Previous Article
    Gaussian iterative algorithm and integrated automorphism equation for random means
  • DCDS Home
  • This Issue
  • Next Article
    A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold
December  2020, 40(12): 6815-6836. doi: 10.3934/dcds.2020295

How to identify a hyperbolic set as a blender

1. 

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

2. 

Graduate School of Business Administration, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan

* Corresponding author: h.m.osinga@auckland.ac.nz

Received  August 2019 Revised  June 2020 Published  August 2020

A blender is a hyperbolic set with a stable or unstable invariant manifold that behaves as a geometric object of a dimension larger than that of the respective manifold itself. Blenders have been constructed in diffeomorphisms with a phase space of dimension at least three. We consider here the question of how one can identify, characterize and also visualize the underlying hyperbolic set of a given diffeomorphism to verify whether it actually is a blender or not. More specifically, we employ advanced numerical techniques for the computation of global manifolds to identify the hyperbolic set and its stable and unstable manifolds in an explicit Hénon-like family of three-dimensional diffeomorphisms. This allows to determine and illustrate whether the hyperbolic set is a blender; in particular, we consider as a distinguishing feature the self-similar structure of the intersection set of the respective global invariant manifold with a plane. By checking and illustrating a denseness property, we are able to identify a parameter range over which the hyperbolic set is a blender, and we discuss and illustrate how the blender disappears.

Citation: Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295
References:
[1]

A. BackJ. GuckenheimerM. MyersF. Wicklin and P. Worfolk, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc., 39 (1992), 303-309.   Google Scholar

[2]

P. G. BarrientosA. Raibekas and A. A. P. Rodrigues, Chaos near a reversible homoclinic bifocus, Dynamical Systems, 34 (2019), 504-516.  doi: 10.1080/14689367.2019.1569592.  Google Scholar

[3]

C. BonattiS. CrovisierL. J. Díaz and A. Wilkinson, What is$\ldots$ a blender?, Notices Amer. Math. Soc., 63 (2016), 1175-1178.  doi: 10.1090/noti1438.  Google Scholar

[4]

C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2), 143 (1996), 357–396. doi: 10.2307/2118647.  Google Scholar

[5]

C. BonattiL. J. Díaz and S. Kiriki, Stabilization of heterodimensional cycles, Nonlinearity, 25 (2012), 931-960.  doi: 10.1088/0951-7715/25/4/931.  Google Scholar

[6]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective, vol. 102 of Encyclopaedia Math. Sci., Springer-Verlag, Berlin, 2005.  Google Scholar

[7]

C. Bonatti and L. J. Díaz, Abundance of $C^1$-robust homoclinic tangencies, Trans. Amer. Math. Soc., 364 (2012), 5111-5148.  doi: 10.1090/S0002-9947-2012-05445-6.  Google Scholar

[8]

L. J. DíazS. Kiriki and K. Shinohara, Blenders in centre unstable Hénon-like families: With an application to heterodimensional bifurcations, Nonlinearity, 27 (2014), 353-378.  doi: 10.1088/0951-7715/27/3/353.  Google Scholar

[9]

L. J. Díaz and S. A. Pérez, Hénon-like families and blender-horseshoes at nontransverse heterodimensional cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1930006. doi: 10.1142/S0218127419300064.  Google Scholar

[10]

J. P. EnglandB. Krauskopf and H. M. Osinga, Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse, SIAM J. Appl. Dyn. Syst., 3 (2004), 161-190.  doi: 10.1137/030600131.  Google Scholar

[11]

A. C. Fowler and C. T. Sparrow, Bifocal homoclinic orbits in four dimensions, Nonlinearity, 4 (1991), 1159-1182.  doi: 10.1088/0951-7715/4/4/007.  Google Scholar

[12]

R. Gilmore and M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeezeland, Wiley-Interscience [John Wiley & Sons], New York, 2002.  Google Scholar

[13]

C. GrebogiE. Ott and J. A. Yorke, Metamorphoses of basin boundaries in nonlinear dynamical systems, Phys. Rev. Lett., 56 (1986), 1011-1014.  doi: 10.1103/PhysRevLett.56.1011.  Google Scholar

[14]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[15]

A. Hammerlindl, B. Krauskopf, G. Mason and H. M. Osinga, Global manifold structure of a continuous-time heterodimensional cycle, arXiv: 1906.11438, 2019. Google Scholar

[16]

M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69-77.  doi: 10.1007/BF01608556.  Google Scholar

[17]

S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara, Existence of blenders in a Hénon-like family: Geometric insights from invariant manifold computations, Nonlinearity, 31 (2018), R239–R267. doi: 10.1088/1361-6544/aacd66.  Google Scholar

[18]

A. J. Homburg and J. S. W. Lamb, Symmetric homoclinic tangles in reversible systems, Ergodic Theory and Dynamical Systems, 26 (2006), 1769-1789.  doi: 10.1017/S0143385706000472.  Google Scholar

[19]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in H. Broer, F. Takens and B. Hasselblatt, Handbook of Dynamical Systems, vol. III Elsevier, Amsterdam, 2010,379–524. Google Scholar

[20]

B. Krauskopf and H. Osinga, Growing $1$D and quasi-$2$D unstable manifolds of maps, J. Comput. Phys., 146 (1998), 404-419.  doi: 10.1006/jcph.1998.6059.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Globalizing two-dimensional unstable manifolds of maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 483-503.  doi: 10.1142/S0218127498000310.  Google Scholar

[22]

B. Krauskopf and H. M. Osinga, Investigating torus bifurcations in the forced Van der Pol oscillator, in Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (Minneapolis, MN, 1997), 119, 199–208, IMA Vol. Math. Appl., Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1208-9_9.  Google Scholar

[23]

D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.  doi: 10.1088/1361-6544/30/1/173.  Google Scholar

[24]

J. J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, 1982.  Google Scholar

[25]

J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35. Cambridge University Press, Cambridge, 1993.  Google Scholar

[26]

A. A. P. Rodrigues, Strange attractors and wandering domains near a homoclinic cycle to a bifocus, Journal of Differential Equations, 269 (2020), 3221-3258.  doi: 10.1016/j.jde.2020.02.027.  Google Scholar

[27]

M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4757-1947-5.  Google Scholar

[28]

M. Shub, What is $\ldots$ a horseshoe?, Notices Amer. Math. Soc., 52 (2005), 516-517.   Google Scholar

[29]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.   Google Scholar

[30]

W. ZhangB. Krauskopf and V. Kirk, How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2825-2851.  doi: 10.3934/dcds.2012.32.2825.  Google Scholar

show all references

References:
[1]

A. BackJ. GuckenheimerM. MyersF. Wicklin and P. Worfolk, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc., 39 (1992), 303-309.   Google Scholar

[2]

P. G. BarrientosA. Raibekas and A. A. P. Rodrigues, Chaos near a reversible homoclinic bifocus, Dynamical Systems, 34 (2019), 504-516.  doi: 10.1080/14689367.2019.1569592.  Google Scholar

[3]

C. BonattiS. CrovisierL. J. Díaz and A. Wilkinson, What is$\ldots$ a blender?, Notices Amer. Math. Soc., 63 (2016), 1175-1178.  doi: 10.1090/noti1438.  Google Scholar

[4]

C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2), 143 (1996), 357–396. doi: 10.2307/2118647.  Google Scholar

[5]

C. BonattiL. J. Díaz and S. Kiriki, Stabilization of heterodimensional cycles, Nonlinearity, 25 (2012), 931-960.  doi: 10.1088/0951-7715/25/4/931.  Google Scholar

[6]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective, vol. 102 of Encyclopaedia Math. Sci., Springer-Verlag, Berlin, 2005.  Google Scholar

[7]

C. Bonatti and L. J. Díaz, Abundance of $C^1$-robust homoclinic tangencies, Trans. Amer. Math. Soc., 364 (2012), 5111-5148.  doi: 10.1090/S0002-9947-2012-05445-6.  Google Scholar

[8]

L. J. DíazS. Kiriki and K. Shinohara, Blenders in centre unstable Hénon-like families: With an application to heterodimensional bifurcations, Nonlinearity, 27 (2014), 353-378.  doi: 10.1088/0951-7715/27/3/353.  Google Scholar

[9]

L. J. Díaz and S. A. Pérez, Hénon-like families and blender-horseshoes at nontransverse heterodimensional cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1930006. doi: 10.1142/S0218127419300064.  Google Scholar

[10]

J. P. EnglandB. Krauskopf and H. M. Osinga, Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse, SIAM J. Appl. Dyn. Syst., 3 (2004), 161-190.  doi: 10.1137/030600131.  Google Scholar

[11]

A. C. Fowler and C. T. Sparrow, Bifocal homoclinic orbits in four dimensions, Nonlinearity, 4 (1991), 1159-1182.  doi: 10.1088/0951-7715/4/4/007.  Google Scholar

[12]

R. Gilmore and M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeezeland, Wiley-Interscience [John Wiley & Sons], New York, 2002.  Google Scholar

[13]

C. GrebogiE. Ott and J. A. Yorke, Metamorphoses of basin boundaries in nonlinear dynamical systems, Phys. Rev. Lett., 56 (1986), 1011-1014.  doi: 10.1103/PhysRevLett.56.1011.  Google Scholar

[14]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[15]

A. Hammerlindl, B. Krauskopf, G. Mason and H. M. Osinga, Global manifold structure of a continuous-time heterodimensional cycle, arXiv: 1906.11438, 2019. Google Scholar

[16]

M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69-77.  doi: 10.1007/BF01608556.  Google Scholar

[17]

S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara, Existence of blenders in a Hénon-like family: Geometric insights from invariant manifold computations, Nonlinearity, 31 (2018), R239–R267. doi: 10.1088/1361-6544/aacd66.  Google Scholar

[18]

A. J. Homburg and J. S. W. Lamb, Symmetric homoclinic tangles in reversible systems, Ergodic Theory and Dynamical Systems, 26 (2006), 1769-1789.  doi: 10.1017/S0143385706000472.  Google Scholar

[19]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in H. Broer, F. Takens and B. Hasselblatt, Handbook of Dynamical Systems, vol. III Elsevier, Amsterdam, 2010,379–524. Google Scholar

[20]

B. Krauskopf and H. Osinga, Growing $1$D and quasi-$2$D unstable manifolds of maps, J. Comput. Phys., 146 (1998), 404-419.  doi: 10.1006/jcph.1998.6059.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Globalizing two-dimensional unstable manifolds of maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 483-503.  doi: 10.1142/S0218127498000310.  Google Scholar

[22]

B. Krauskopf and H. M. Osinga, Investigating torus bifurcations in the forced Van der Pol oscillator, in Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (Minneapolis, MN, 1997), 119, 199–208, IMA Vol. Math. Appl., Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1208-9_9.  Google Scholar

[23]

D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.  doi: 10.1088/1361-6544/30/1/173.  Google Scholar

[24]

J. J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, 1982.  Google Scholar

[25]

J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35. Cambridge University Press, Cambridge, 1993.  Google Scholar

[26]

A. A. P. Rodrigues, Strange attractors and wandering domains near a homoclinic cycle to a bifocus, Journal of Differential Equations, 269 (2020), 3221-3258.  doi: 10.1016/j.jde.2020.02.027.  Google Scholar

[27]

M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4757-1947-5.  Google Scholar

[28]

M. Shub, What is $\ldots$ a horseshoe?, Notices Amer. Math. Soc., 52 (2005), 516-517.   Google Scholar

[29]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.   Google Scholar

[30]

W. ZhangB. Krauskopf and V. Kirk, How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2825-2851.  doi: 10.3934/dcds.2012.32.2825.  Google Scholar

Figure 1.  Illustration of the hyperbolic set $ \Lambda_h $ (black dots) as the closure of the intersection between the manifolds $ W^s(p_h^\pm) $ (blue curves) and $ W^u(p_h^\pm) $ (red curves) of the saddle fixed points $ p_h^\pm $ (green crosses); panels (a) and (b) show two views of the $ (x, y) $-plane, and panel (c) shows the Poincaré disk in the $ (\bar{x}, \bar{y}) $-plane
Figure 2.  The hyperbolic set $ \Lambda $ (black dots) of $ H $ with $ \xi = 1.2 $, determined as the intersection set of $ W^s(p^-) $ (dark blue) and $ W^s(p^+) $ (light blue) with $ W^u(p^-) $ (red surface), shown in $ (\bar{x}, \bar{y}, \bar{z}) $-space (a) and in projection onto the $ (\bar{x}, \bar{z}) $-plane (b). Panels (c) and (d) illustrate $ \Lambda $ and its tangent space $ T^s(\Lambda) $ (green lines) in $ (x, y, z) $-space and in projection onto the $ (x, z) $-plane, respectively; four regions are highlighted with different shades of green
Figure 3.  The hyperbolic set $ \Lambda $ (black dots) of $ H $ with $ \xi = 2.0 $, determined as the intersection set of $ W^s(p^-) $ (dark blue) and $ W^s(p^+) $ (light blue) with $ W^u(p^-) $ (red surface), shown in $ (\bar{x}, \bar{y}, \bar{z}) $-space (a) and in projection onto the $ (\bar{x}, \bar{z}) $-plane (b). Panels (c) and (d) illustrate $ \Lambda $ and its tangent space $ T^s(\Lambda) $ (green lines) in $ (x, y, z) $-space and in projection onto the $ (x, z) $-plane, respectively; four different regions are highlighted with different shades of green
Figure 4.  The hyperbolic set $ \Lambda $ of $ H $ with $ \xi = 0.8 $, determined as the intersection set of $ W^u(p^-) $ (red curves) and $ W^u(p^+) $ (magenta curves) with $ W^s(p^-) $ (blue surface), shown in $ (\bar{x}, \bar{y}, \bar{z}) $-space (a) and in projection onto the $ (\bar{y}, \bar{z}) $-plane (b). Panels (c) and (d) illustrate $ \Lambda $ and its tangent space $ T^u(\Lambda) $ (green lines) in $ (x, y, z) $-space and in projection onto the $ (y, z) $-plane, respectively; four regions are highlighted with different shades of green
Figure 5.  The hyperbolic set $ \Lambda $ of $ H $ with $ \xi = 0.45 $, determined as the intersection set of $ W^u(p^-) $ (red curves) and $ W^u(p^+) $ (magenta curves) with $ W^s(p^-) $ (blue surface), shown in $ (\bar{x}, \bar{y}, \bar{z}) $-space (a) and in projection onto the $ (\bar{y}, \bar{z}) $-plane (b). Panels (c) and (d) illustrate $ \Lambda $ and its tangent space $ T^u(\Lambda) $ (green lines) in $ (x, y, z) $-space and in projection onto the $ (y, z) $-plane, respectively; four regions are highlighted with different shades of green
Figure 6.  The intersection set for $ \xi = 1.2 $ of the stable manifolds $ W^s(p^-) $ (dark blue) and $ W^s(p^+) $ (light blue) with the section $ \Sigma $ (gray plane) defined by $ \bar{x} = \bar{y} $. Panel (a) shows the intersection points in $ \Sigma $ and panel (b) shows how $ W^s(p^\pm) $ intersect $ \Sigma $ in $ (\bar{x}, \bar{y}, \bar{z}) $-space
Figure 7.  The intersection set for $ \xi = 2.0 $ of the stable manifold $ W^s(p^-) $ (dark blue) and $ W^s(p^+) $ (light blue) with the section $ \Sigma $ (gray plane) defined by $ \bar{x} = \bar{y} $. Panel (a) shows the intersection points in $ \Sigma $ and panel (b) shows how $ W^s(p^\pm) $ intersect $ \Sigma $ in $ (\bar{x}, \bar{y}, \bar{z}) $-space
Figure 8.  The five largest $ \bar{z} $-gaps $ \Delta^i $, for $ i = 1, \dots, 5 $, of $ W^s(p^-) $ in $ \Sigma $ as a function of the arclength, represented by the exponent $ k $, for $ \xi = 1.2 $ (a1) and for $ \xi = 2.0 $ (a2). Panel (b) shows the largest gap $ \Delta^1 $ versus $ \xi $ for $ k = 6 $ (red) when $ 0 < \xi <1 $ and for $ k = 7 $ (blue) when $ 1 < \xi $. Panel (c) shows the associated $ \bar{z} $-values of $ p^\pm $ (green), $ W^s(p^-) \cap \Sigma $ (blue) and $ W^u(p^-) \cap \Sigma $ (red), respectively
Figure 9.  Self-similar structure of the intersection set $ W^s(p^-) \cap \Sigma $ for $ \xi = 1.2 $. Panel (a1) shows a part of $ W^s(p^-) \cap \Sigma $ in a color coding according to the $ \bar{x} $-values, and panel (a2) is an enlargement. Panels (b1) and (b2) show $ \bar{x}_{n+1} $ versus $ \bar{x}_{n} $ and $ \bar{z}_{n+1} $ versus $ \bar{z}_{n} $, respectively, of successive points of $ W^s(p^-) \cap \Sigma $
Figure 10.  Self-similar structure of the intersection set $ W^s(p^-) \cap \Sigma $ for $ \xi = 2.0 $. Panel (a1) shows a part of $ W^s(p^-) \cap \Sigma $ in a color coding according to the $ \bar{x} $-values, and panel (a2) is an enlargement. Panels (b1) and (b2) show $ \bar{x}_{n+1} $ versus $ \bar{x}_{n} $ and $ \bar{z}_{n+1} $ versus $ \bar{z}_{n} $, respectively, of successive points of $ W^s(p^-) \cap \Sigma $
[1]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[2]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[3]

Pablo G. Barrientos, Abbas Fakhari. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1361-1382. doi: 10.3934/dcdsb.2019231

[4]

Christian Bonatti, Stanislav Minkov, Alexey Okunev, Ivan Shilin. Anosov diffeomorphism with a horseshoe that attracts almost any point. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 441-465. doi: 10.3934/dcds.2020017

[5]

Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems & Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045

[6]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[7]

Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315

[8]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[9]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[10]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[11]

Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034

[12]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[13]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[14]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

[15]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[16]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[17]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[18]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[19]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[20]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]