doi: 10.3934/dcds.2020298

Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case

Univ. Sorbonne Paris Nord, Institut Galilée, LAGA, UMR 7539, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France

Received  March 2019 Revised  June 2020 Published  August 2020

We consider the focusing $ L^2 $-supercritical Schrödinger equation in the exterior of a smooth, compact, strictly convex obstacle $ \Theta \subset \mathbb{R}^3 $. We construct a solution behaving asymptotically as a solitary wave on $ \mathbb{R}^3, $ for large times. When the velocity of the solitary wave is high, the existence of such a solution can be proved by a classical fixed point argument. To construct solutions with arbitrary nonzero velocity, we use a compactness argument similar to the one that was introduced by F.Merle in 1990 to construct solutions of the NLS equation blowing up at several points together with a topological argument using Brouwer's theorem to control the unstable direction of the linearized operator at the soliton. These solutions are arbitrarily close to the scattering threshold given by a previous work of R. Killip, M. Visan and X. Zhang, which is the same as the one on the whole Euclidean space given by S. Roundenko and J. Holmer in the radial case and by the previous authors with T. Duyckaerts in the non-radial case.

Citation: Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020298
References:
[1]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680.  doi: 10.4171/RMI/849.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[3]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[8]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[9]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[10]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[12]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[13]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[14]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[15]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[16]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[17]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[19]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[20]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[21]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[22]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[23]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[24]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[25]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[26]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[29]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[30]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[31]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[32]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[33]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[34]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[35]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[39]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[40]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

show all references

References:
[1]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680.  doi: 10.4171/RMI/849.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[3]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[8]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[9]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[10]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[12]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[13]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[14]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[15]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[16]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[17]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[19]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[20]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[21]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[22]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[23]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[24]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[25]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[26]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[29]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[30]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[31]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[32]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[33]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[34]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[35]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[39]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[40]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

[1]

Walter Allegretto, Yanping Lin, Shuqing Ma. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 757-780. doi: 10.3934/dcds.2002.8.757

[2]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[3]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020195

[4]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[5]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[6]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[7]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[8]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[9]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[10]

Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[13]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[14]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[15]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[16]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[17]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[18]

Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure & Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73

[19]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[20]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (20)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]