February  2021, 41(2): 701-746. doi: 10.3934/dcds.2020298

Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case

Univ. Sorbonne Paris Nord, Institut Galilée, LAGA, UMR 7539, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France

Received  March 2019 Revised  June 2020 Published  August 2020

We consider the focusing $ L^2 $-supercritical Schrödinger equation in the exterior of a smooth, compact, strictly convex obstacle $ \Theta \subset \mathbb{R}^3 $. We construct a solution behaving asymptotically as a solitary wave on $ \mathbb{R}^3, $ for large times. When the velocity of the solitary wave is high, the existence of such a solution can be proved by a classical fixed point argument. To construct solutions with arbitrary nonzero velocity, we use a compactness argument similar to the one that was introduced by F.Merle in 1990 to construct solutions of the NLS equation blowing up at several points together with a topological argument using Brouwer's theorem to control the unstable direction of the linearized operator at the soliton. These solutions are arbitrarily close to the scattering threshold given by a previous work of R. Killip, M. Visan and X. Zhang, which is the same as the one on the whole Euclidean space given by S. Roundenko and J. Holmer in the radial case and by the previous authors with T. Duyckaerts in the non-radial case.

Citation: Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298
References:
[1]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680.  doi: 10.4171/RMI/849.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[3]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[8]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[9]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[10]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[12]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[13]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[14]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[15]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[16]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[17]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[19]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[20]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[21]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[22]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[23]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[24]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[25]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[26]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[29]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[30]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[31]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[32]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[33]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[34]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[35]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[39]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[40]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

show all references

References:
[1]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680.  doi: 10.4171/RMI/849.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[3]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[5]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[8]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[9]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[10]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[11]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[12]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[13]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[14]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[15]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[16]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[17]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[19]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[20]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[21]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[22]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[23]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[24]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[25]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[26]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[29]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[30]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[31]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[32]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[33]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[34]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[35]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[36]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[39]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[40]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

[1]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[18]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Article outline

[Back to Top]