doi: 10.3934/dcds.2020303

A generalization of the Babbage functional equation

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

Received  January 2020 Revised  June 2020 Published  August 2020

A recent refinement of Kerékjártó's Theorem has shown that in $ \mathbb R $ and $ \mathbb R^2 $ all $ \mathcal C^l $–solutions of the functional equation $ f^n = \text{Id} $ are $ \mathcal C^l $–linearizable, where $ l\in \{0,1,\dots \infty\} $. When $ l\geq 1 $, in the real line we prove that the same result holds for solutions of $ f^n = f $, while we can only get a local version of it in the plane. Through examples, we show that these results are no longer true when $ l = 0 $ or when considering the functional equation $ f^n = f^k $ with $ n>k\geq 2 $.

Citation: Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020303
References:
[1]

C. Babbage, An essay towards the calculus of functions, Philos. Trans. Royal Soc., 105 (1815), 389-423.   Google Scholar

[2]

N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag London Ltd., London, 2011. doi: 10.1007/978-0-85729-115-8.  Google Scholar

[3]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequ. Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[4]

R. H. Bing, Inequivalent families of periodic homeomorphisms of $E^3$, Ann. of Math., 80 (1964), 78-93.  doi: 10.2307/1970492.  Google Scholar

[5]

A. CimaA. GasullF. Mañosas and R. Ortega, Linearization of planar involutions in $\mathcal C^1$, Ann. Mat. Pura Appl., 194 (2015), 1349-1357.  doi: 10.1007/s10231-014-0423-5.  Google Scholar

[6]

A. CimaA. GasullF. Mañosas and R. Ortega, Smooth linearisation of planar periodic maps, Math. Proc. Camb. Philos. Soc., 167 (2019), 295-320.  doi: 10.1017/S0305004118000336.  Google Scholar

[7]

A. Constantin and B. Kolev, The theorem of Kerérekjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math., 40 (1994), 193-204.   Google Scholar

[8]

G. M. Ewing and W. R. Utz, Continuous solutions of the functional equation $f^n(x) = f(x)$, Canadian J. Math., 5 (1953), 101-103.  doi: 10.4153/CJM-1953-012-8.  Google Scholar

[9]

A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1962), 47-82.   Google Scholar

[10]

R. HaynesS. KwasikJ. Mast and R. Schultz, Periodic maps on $R^7$ without fixed points, Math. Proc. Camb. Philos. Soc., 132 (2002), 131-136.  doi: 10.1017/S0305004101005345.  Google Scholar

[11]

M. Hirsch, Differential Topology, Springer-Verlag, 1976.  Google Scholar

[12]

M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser Verlag, 2010. doi: 10.1007/978-3-0346-0330-0.  Google Scholar

[13]

G. Ishikawa and T. Nishimura, Smooth retracts of Euclidean space, Kodai Math. J., 18 (1995), 260-265.   Google Scholar

[14]

W. Jarczyk, Babbage equation on the circle, Publ. Math., 63 (2003), 389-400.   Google Scholar

[15]

N. McShane, On the periodicity of homeomorphisms of the real line, Amer. Math. Monthly, 68 (1961), 562-563.  doi: 10.2307/2311152.  Google Scholar

[16] J. Milnor, Topology from the Differentiable Viewpoint, University of Virginia Press, 1965.   Google Scholar
[17]

J. Munkres, Topology, 2$^{nd}$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.  Google Scholar

[18]

I. Richards, On the classification of non-compact surfaces, Trans. Am. Math. Soc., 106 (1963), 259-269.  doi: 10.1090/S0002-9947-1963-0143186-0.  Google Scholar

[19]

M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, 3$^rd$ edition, Publish or Perish, 1970.  Google Scholar

[20] E. Stein, Complex Analysis, Princeton University Press, Princeton, N.J., 2003.   Google Scholar
[21]

T. W. Tucker, On the Fox-Artin sphere and surfaces in noncompact 3-manifolds, Q. J. Math., 28 (1977), 243-253.  doi: 10.1093/qmath/28.2.243.  Google Scholar

[22]

B. von Kérékjartó, Über die periodischen transformationen der kreisscheibe und der kugelfläche, Math. Ann., 80 (1919), 36-38.  doi: 10.1007/BF01463232.  Google Scholar

[23]

V. B. Yap, Re-imagining the Hardy-Weinberg law, 2013, arXiv: 1307.4417v1. Google Scholar

show all references

References:
[1]

C. Babbage, An essay towards the calculus of functions, Philos. Trans. Royal Soc., 105 (1815), 389-423.   Google Scholar

[2]

N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag London Ltd., London, 2011. doi: 10.1007/978-0-85729-115-8.  Google Scholar

[3]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequ. Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[4]

R. H. Bing, Inequivalent families of periodic homeomorphisms of $E^3$, Ann. of Math., 80 (1964), 78-93.  doi: 10.2307/1970492.  Google Scholar

[5]

A. CimaA. GasullF. Mañosas and R. Ortega, Linearization of planar involutions in $\mathcal C^1$, Ann. Mat. Pura Appl., 194 (2015), 1349-1357.  doi: 10.1007/s10231-014-0423-5.  Google Scholar

[6]

A. CimaA. GasullF. Mañosas and R. Ortega, Smooth linearisation of planar periodic maps, Math. Proc. Camb. Philos. Soc., 167 (2019), 295-320.  doi: 10.1017/S0305004118000336.  Google Scholar

[7]

A. Constantin and B. Kolev, The theorem of Kerérekjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math., 40 (1994), 193-204.   Google Scholar

[8]

G. M. Ewing and W. R. Utz, Continuous solutions of the functional equation $f^n(x) = f(x)$, Canadian J. Math., 5 (1953), 101-103.  doi: 10.4153/CJM-1953-012-8.  Google Scholar

[9]

A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1962), 47-82.   Google Scholar

[10]

R. HaynesS. KwasikJ. Mast and R. Schultz, Periodic maps on $R^7$ without fixed points, Math. Proc. Camb. Philos. Soc., 132 (2002), 131-136.  doi: 10.1017/S0305004101005345.  Google Scholar

[11]

M. Hirsch, Differential Topology, Springer-Verlag, 1976.  Google Scholar

[12]

M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser Verlag, 2010. doi: 10.1007/978-3-0346-0330-0.  Google Scholar

[13]

G. Ishikawa and T. Nishimura, Smooth retracts of Euclidean space, Kodai Math. J., 18 (1995), 260-265.   Google Scholar

[14]

W. Jarczyk, Babbage equation on the circle, Publ. Math., 63 (2003), 389-400.   Google Scholar

[15]

N. McShane, On the periodicity of homeomorphisms of the real line, Amer. Math. Monthly, 68 (1961), 562-563.  doi: 10.2307/2311152.  Google Scholar

[16] J. Milnor, Topology from the Differentiable Viewpoint, University of Virginia Press, 1965.   Google Scholar
[17]

J. Munkres, Topology, 2$^{nd}$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.  Google Scholar

[18]

I. Richards, On the classification of non-compact surfaces, Trans. Am. Math. Soc., 106 (1963), 259-269.  doi: 10.1090/S0002-9947-1963-0143186-0.  Google Scholar

[19]

M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, 3$^rd$ edition, Publish or Perish, 1970.  Google Scholar

[20] E. Stein, Complex Analysis, Princeton University Press, Princeton, N.J., 2003.   Google Scholar
[21]

T. W. Tucker, On the Fox-Artin sphere and surfaces in noncompact 3-manifolds, Q. J. Math., 28 (1977), 243-253.  doi: 10.1093/qmath/28.2.243.  Google Scholar

[22]

B. von Kérékjartó, Über die periodischen transformationen der kreisscheibe und der kugelfläche, Math. Ann., 80 (1919), 36-38.  doi: 10.1007/BF01463232.  Google Scholar

[23]

V. B. Yap, Re-imagining the Hardy-Weinberg law, 2013, arXiv: 1307.4417v1. Google Scholar

Figure 1.  Graph of a generic idempotent continuous function in $ \mathbb R $
Figure 2.  Graph of the function $ f_\lambda $ with $ \lambda = (0.11001\dots)_2 $
Figure 3.  Graph of the function $ f_\lambda $ with $ \lambda = (0.11001\dots)_2 $
Figure 4.  Concatenation of two overhand knots, one figure eight knot and one overhand knot
[1]

Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694

[2]

Xiao Tang, Yingying Zeng, Weinian Zhang. Interval homeomorphic solutions of a functional equation of nonautonomous iterations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6967-6984. doi: 10.3934/dcds.2020214

[3]

Dyi-Shing Ou, Kenneth James Palmer. A constructive proof of the existence of a semi-conjugacy for a one dimensional map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 977-992. doi: 10.3934/dcdsb.2012.17.977

[4]

A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347

[5]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[6]

Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132

[7]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[8]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[9]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[10]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001

[13]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[14]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[15]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[16]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[17]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[18]

Wacław Marzantowicz, Piotr Maciej Przygodzki. Finding periodic points of a map by use of a k-adic expansion. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 495-514. doi: 10.3934/dcds.1999.5.495

[19]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[20]

Osama Moaaz, Omar Bazighifan. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2465-2473. doi: 10.3934/dcdss.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]