February  2021, 41(2): 921-966. doi: 10.3934/dcds.2020304

Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions

1. 

Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

* Corresponding author: Yangjun Ma

Received  April 2020 Published  August 2020

Fund Project: This work is supported by the grants from the National Natural Foundation of China under contract No. 11971360

In this paper we study the incompressible limit of the compressible inertial Qian-Sheng model for liquid crystal flow. We first derive the uniform energy estimates on the Mach number $ \epsilon $ for both the compressible system and its differential system with respect to time under uniformly in $ \epsilon $ small initial data. Then, based on these uniform estimates, we pass to the limit in the compressible system as $ \epsilon \rightarrow 0 $, so that we establish the global classical solution of the incompressible system by compactness arguments. We emphasize that, on global in time existence of the incompressible inertial Qian-Sheng model under small size of initial data, the range of our assumptions on the coefficients are significantly enlarged, comparing to the results of De Anna and Zarnescu's work [6]. Moreover, we also obtain the convergence rates associated with $ L^2 $-norm with well-prepared initial data.

Citation: Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304
References:
[1] R. A. Adams and J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[2]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[3]

Q. BieH. CuiQ. Wang and Z.-A. Yao, Incompressible limit for the compressible flow of liquid crystals in Lp type critical Besov spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2879-2910.  doi: 10.3934/dcds.2018124.  Google Scholar

[4]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[5]

Y. Cai and W. Wang, Global well-posedness for the three dimensional simplified inertial Ericksen-Leslie systems near equilibrium, J. Funct. Anal., 279 (2020), 108521, 38 pp. doi: 10.1016/j.jfa.2020.108521.  Google Scholar

[6]

F. De Anna and A. Zarnescu, Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals, J. Differential Equations, 264 (2018), 1080-1118.  doi: 10.1016/j.jde.2017.09.031.  Google Scholar

[7]

S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.  Google Scholar

[8]

S. DingJ. HuangH. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[9]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15-35.  doi: 10.1142/S0219891618500029.  Google Scholar

[10]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl., 76 (1997), 477-498.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[11]

L. Guo, N. Jiang, F. C. Li, Y.-L. Luo and S. J. Tang, Incompressible limit for the compressible Ericksen-Leslie's parabolic-hyperbolic liquid crystal flow, arXiv: 1911.04315v1. Google Scholar

[12]

J. X. Huang, N. Jiang, Y.-L. Luo and L. F. Zhao, Small data global regularity for 3-D Ericksen-Leslie's hyperbolic liquid crystal model without kinematic transport, arXiv: 1812.08341. Google Scholar

[13]

J. X. Huang, N. Jiang, Y.-L. Luo and L. F. Zhao, Small data global regularity for simplified 3-D Ericksen-Leslie's compressible hyperbolic liquid crystal model, arXiv: 1905.04884. Google Scholar

[14]

S. JiangQ. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[15]

S. JiangQ. Ju and F. Li, Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.  doi: 10.1137/15M102842X.  Google Scholar

[16]

S. JiangQ. JuF. Li and Z.-P. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[17]

N. Jiang and Y.-L. Luo, On well-posedness of Ericksen-Leslie's hyperbolic incompressible liquid crystal model, SIAM J. Math. Anal., 51 (2019), 403-434.  doi: 10.1137/18M1167310.  Google Scholar

[18]

N. Jiang, Y.-L. Luo, Y. J. Ma and S. J. Tang, Entropy inequality and energy dissipation of inertial Qian-Sheng model of liquid crystals, Preprint, 2020. Google Scholar

[19]

N. JiangY.-L. Luo and S. Tang, On well-posedness of Ericksen-Leslie's parabolic-hyperbolic liquid crystal model in compressible flow, Math. Models Methods Appl. Sci., 29 (2019), 121-183.  doi: 10.1142/S0218202519500052.  Google Scholar

[20]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.  doi: 10.1002/cpa.3160340405.  Google Scholar

[21]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.  doi: 10.1002/cpa.3160350503.  Google Scholar

[22]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[23] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications 3, The Clarendon Press, Oxford University Press, New York, 1996.   Google Scholar
[24]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[25]

Y. J. Ma, Global well-posedness of incompressible non-inertial Qian-Sheng model., Discrete Contin. Dyn. Syst., 40 (2020), 4479-4496.  doi: 10.3934/dcds.2020187.  Google Scholar

[26] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.   Google Scholar
[27]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.  doi: 10.1007/PL00004241.  Google Scholar

[28]

T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), 7475-7485.  doi: 10.1103/PhysRevE.58.7475.  Google Scholar

[29]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.  doi: 10.1007/BF01210792.  Google Scholar

[30]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[31]

J. V. Selinger, Introduction to the Theory of Soft Matter: From Ideal gas to Liquid Crystals, Springer International Publishing, Switzerland, 2016. Google Scholar

[32]

J. Simon, Compact sets in the space $L^p(0; T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[33]

S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26 (1986), 323-331.  doi: 10.1215/kjm/1250520925.  Google Scholar

[34]

H. WuX. Xu and A. Zarnescu, Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals, Arch. Ration. Mech. Anal., 231 (2019), 1217-1267.  doi: 10.1007/s00205-018-1297-2.  Google Scholar

[35]

D. H. Wang and C. Yu, Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16 (2014), 771-786.  doi: 10.1007/s00021-014-0185-2.  Google Scholar

[36]

X. Yang, Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a bounded domain, Nonlinear Anal., 120 (2015), 118-126.  doi: 10.1016/j.na.2015.03.010.  Google Scholar

[37]

L. ZengG. Ni and X. Ai, Low Mach number limit of global solutions to 3-D compressible nematic liquid crystal flows with Dirichlet boundary condition, Math. Methods Appl. Sci., 42 (2019), 2053-2068.  doi: 10.1002/mma.5499.  Google Scholar

show all references

References:
[1] R. A. Adams and J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[2]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[3]

Q. BieH. CuiQ. Wang and Z.-A. Yao, Incompressible limit for the compressible flow of liquid crystals in Lp type critical Besov spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2879-2910.  doi: 10.3934/dcds.2018124.  Google Scholar

[4]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[5]

Y. Cai and W. Wang, Global well-posedness for the three dimensional simplified inertial Ericksen-Leslie systems near equilibrium, J. Funct. Anal., 279 (2020), 108521, 38 pp. doi: 10.1016/j.jfa.2020.108521.  Google Scholar

[6]

F. De Anna and A. Zarnescu, Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals, J. Differential Equations, 264 (2018), 1080-1118.  doi: 10.1016/j.jde.2017.09.031.  Google Scholar

[7]

S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.  Google Scholar

[8]

S. DingJ. HuangH. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[9]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15-35.  doi: 10.1142/S0219891618500029.  Google Scholar

[10]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl., 76 (1997), 477-498.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[11]

L. Guo, N. Jiang, F. C. Li, Y.-L. Luo and S. J. Tang, Incompressible limit for the compressible Ericksen-Leslie's parabolic-hyperbolic liquid crystal flow, arXiv: 1911.04315v1. Google Scholar

[12]

J. X. Huang, N. Jiang, Y.-L. Luo and L. F. Zhao, Small data global regularity for 3-D Ericksen-Leslie's hyperbolic liquid crystal model without kinematic transport, arXiv: 1812.08341. Google Scholar

[13]

J. X. Huang, N. Jiang, Y.-L. Luo and L. F. Zhao, Small data global regularity for simplified 3-D Ericksen-Leslie's compressible hyperbolic liquid crystal model, arXiv: 1905.04884. Google Scholar

[14]

S. JiangQ. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[15]

S. JiangQ. Ju and F. Li, Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.  doi: 10.1137/15M102842X.  Google Scholar

[16]

S. JiangQ. JuF. Li and Z.-P. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[17]

N. Jiang and Y.-L. Luo, On well-posedness of Ericksen-Leslie's hyperbolic incompressible liquid crystal model, SIAM J. Math. Anal., 51 (2019), 403-434.  doi: 10.1137/18M1167310.  Google Scholar

[18]

N. Jiang, Y.-L. Luo, Y. J. Ma and S. J. Tang, Entropy inequality and energy dissipation of inertial Qian-Sheng model of liquid crystals, Preprint, 2020. Google Scholar

[19]

N. JiangY.-L. Luo and S. Tang, On well-posedness of Ericksen-Leslie's parabolic-hyperbolic liquid crystal model in compressible flow, Math. Models Methods Appl. Sci., 29 (2019), 121-183.  doi: 10.1142/S0218202519500052.  Google Scholar

[20]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.  doi: 10.1002/cpa.3160340405.  Google Scholar

[21]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.  doi: 10.1002/cpa.3160350503.  Google Scholar

[22]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[23] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications 3, The Clarendon Press, Oxford University Press, New York, 1996.   Google Scholar
[24]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[25]

Y. J. Ma, Global well-posedness of incompressible non-inertial Qian-Sheng model., Discrete Contin. Dyn. Syst., 40 (2020), 4479-4496.  doi: 10.3934/dcds.2020187.  Google Scholar

[26] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.   Google Scholar
[27]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.  doi: 10.1007/PL00004241.  Google Scholar

[28]

T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), 7475-7485.  doi: 10.1103/PhysRevE.58.7475.  Google Scholar

[29]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.  doi: 10.1007/BF01210792.  Google Scholar

[30]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[31]

J. V. Selinger, Introduction to the Theory of Soft Matter: From Ideal gas to Liquid Crystals, Springer International Publishing, Switzerland, 2016. Google Scholar

[32]

J. Simon, Compact sets in the space $L^p(0; T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[33]

S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26 (1986), 323-331.  doi: 10.1215/kjm/1250520925.  Google Scholar

[34]

H. WuX. Xu and A. Zarnescu, Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals, Arch. Ration. Mech. Anal., 231 (2019), 1217-1267.  doi: 10.1007/s00205-018-1297-2.  Google Scholar

[35]

D. H. Wang and C. Yu, Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16 (2014), 771-786.  doi: 10.1007/s00021-014-0185-2.  Google Scholar

[36]

X. Yang, Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a bounded domain, Nonlinear Anal., 120 (2015), 118-126.  doi: 10.1016/j.na.2015.03.010.  Google Scholar

[37]

L. ZengG. Ni and X. Ai, Low Mach number limit of global solutions to 3-D compressible nematic liquid crystal flows with Dirichlet boundary condition, Math. Methods Appl. Sci., 42 (2019), 2053-2068.  doi: 10.1002/mma.5499.  Google Scholar

[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[4]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[5]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[6]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[7]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[8]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[10]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[11]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[14]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[20]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

2019 Impact Factor: 1.338

Article outline

[Back to Top]