doi: 10.3934/dcds.2020307

Recoding Lie algebraic subshifts

Department of Mathematics and Statistics, University of Turku, Turku, Finland

* Corresponding author: Ilkka Törmä

Ville Salo supported by Academy of Finland grant 2608073211.

Received  December 2019 Revised  June 2020 Published  August 2020

Fund Project: Ilkka Törmä supported by Academy of Finland grant 295095

We study internal Lie algebras in the category of subshifts on a fixed group – or Lie algebraic subshifts for short. We show that if the acting group is virtually polycyclic and the underlying vector space has dense homoclinic points, such subshifts can be recoded to have a cellwise Lie bracket. On the other hand there exist Lie algebraic subshifts (on any finitely-generated non-torsion group) with cellwise vector space operations whose bracket cannot be recoded to be cellwise. We also show that one-dimensional full vector shifts with cellwise vector space operations can support infinitely many compatible Lie brackets even up to automorphisms of the underlying vector shift, and we state the classification problem of such brackets.

From attempts to generalize these results to other acting groups, the following questions arise: Does every f.g. group admit a linear cellular automaton of infinite order? Which groups admit abelian group shifts whose homoclinic group is not generated by finitely many orbits? For the first question, we show that the Grigorchuk group admits such a CA, and for the second we show that the lamplighter group admits such group shifts.

Citation: Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020307
References:
[1]

S. BarbieriR. GómezB. Marcus and S. Taati, Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups, Nonlinearity, 33 (2020), 2409-2454.  doi: 10.1088/1361-6544/ab6a75.  Google Scholar

[2]

S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785. Google Scholar

[3]

F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc., 119 (1993), 985-992.  doi: 10.1090/S0002-9939-1993-1155593-2.  Google Scholar

[4]

M. Boyle and M. Schraudner, $\Bbb Z^d$ group shifts and {B}ernoulli factors, Ergodic Theory Dynam. Systems, 28 (2008), 367-387.  doi: 10.1017/S0143385707000697.  Google Scholar

[5]

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981.  Google Scholar

[6]

N.-P. Chung and H. Li, Homoclinic groups, IE groups, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858.  doi: 10.1007/s00222-014-0524-1.  Google Scholar

[7]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.   Google Scholar

[8]

P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc., 3 (1954), 419-436.  doi: 10.1112/plms/s3-4.1.419.  Google Scholar

[9]

D. Kerr and H. Li, Combinatorial independence and sofic entropy, Commun. Math. Stat., 1 (2013), 213-257.  doi: 10.1007/s40304-013-0001-y.  Google Scholar

[10]

D. Kerr and H. Li, Ergodic Theory, Springer Monographs in Mathematics, Springer, Cham, 2016. doi: 10.1007/978-3-319-49847-8.  Google Scholar

[11]

B. P. Kitchens, Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., 7 (1987), 249-261.  doi: 10.1017/S0143385700003989.  Google Scholar

[12]

S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York, 1998.  Google Scholar

[13]

B. Malman, Zero-divisors and Idempotents in Group Rings, Master's thesis, Lund University, 2014. Google Scholar

[14]

N. Matte Bon, Topological full groups of minimal subshifts with subgroups of intermediate growth, J. Mod. Dyn., 9 (2015), 67-80.  doi: 10.3934/jmd.2015.9.67.  Google Scholar

[15]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.  Google Scholar

[16]

V. Salo, Subshifts with Simple Cellular Automata, PhD thesis, University of Turku, 2014. Google Scholar

[17]

V. Salo, Universal groups of cellular automata, preprint, arXiv: 1808.08697. Google Scholar

[18]

V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951. Google Scholar

[19]

V. Salo and I. Törmä, On shift spaces with algebraic structure, in How the World Computes, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7318 (2012), 636–645. doi: 10.1007/978-3-642-30870-3_64.  Google Scholar

[20]

V. Salo and I. Törmä, Category Theory of Symbolic Dynamics, Theoret. Comput. Sci., 567 (2015), 21-45.  doi: 10.1016/j.tcs.2014.10.023.  Google Scholar

[21]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-0277-2.  Google Scholar

show all references

References:
[1]

S. BarbieriR. GómezB. Marcus and S. Taati, Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups, Nonlinearity, 33 (2020), 2409-2454.  doi: 10.1088/1361-6544/ab6a75.  Google Scholar

[2]

S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785. Google Scholar

[3]

F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc., 119 (1993), 985-992.  doi: 10.1090/S0002-9939-1993-1155593-2.  Google Scholar

[4]

M. Boyle and M. Schraudner, $\Bbb Z^d$ group shifts and {B}ernoulli factors, Ergodic Theory Dynam. Systems, 28 (2008), 367-387.  doi: 10.1017/S0143385707000697.  Google Scholar

[5]

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981.  Google Scholar

[6]

N.-P. Chung and H. Li, Homoclinic groups, IE groups, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858.  doi: 10.1007/s00222-014-0524-1.  Google Scholar

[7]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.   Google Scholar

[8]

P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc., 3 (1954), 419-436.  doi: 10.1112/plms/s3-4.1.419.  Google Scholar

[9]

D. Kerr and H. Li, Combinatorial independence and sofic entropy, Commun. Math. Stat., 1 (2013), 213-257.  doi: 10.1007/s40304-013-0001-y.  Google Scholar

[10]

D. Kerr and H. Li, Ergodic Theory, Springer Monographs in Mathematics, Springer, Cham, 2016. doi: 10.1007/978-3-319-49847-8.  Google Scholar

[11]

B. P. Kitchens, Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., 7 (1987), 249-261.  doi: 10.1017/S0143385700003989.  Google Scholar

[12]

S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York, 1998.  Google Scholar

[13]

B. Malman, Zero-divisors and Idempotents in Group Rings, Master's thesis, Lund University, 2014. Google Scholar

[14]

N. Matte Bon, Topological full groups of minimal subshifts with subgroups of intermediate growth, J. Mod. Dyn., 9 (2015), 67-80.  doi: 10.3934/jmd.2015.9.67.  Google Scholar

[15]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.  Google Scholar

[16]

V. Salo, Subshifts with Simple Cellular Automata, PhD thesis, University of Turku, 2014. Google Scholar

[17]

V. Salo, Universal groups of cellular automata, preprint, arXiv: 1808.08697. Google Scholar

[18]

V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951. Google Scholar

[19]

V. Salo and I. Törmä, On shift spaces with algebraic structure, in How the World Computes, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7318 (2012), 636–645. doi: 10.1007/978-3-642-30870-3_64.  Google Scholar

[20]

V. Salo and I. Törmä, Category Theory of Symbolic Dynamics, Theoret. Comput. Sci., 567 (2015), 21-45.  doi: 10.1016/j.tcs.2014.10.023.  Google Scholar

[21]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-0277-2.  Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[3]

Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001

[4]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[5]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[6]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[7]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[8]

Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753

[9]

Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058

[10]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[11]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[12]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[13]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130

[14]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

[15]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[16]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[17]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[18]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[19]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[20]

Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure & Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]