March  2021, 41(3): 1023-1050. doi: 10.3934/dcds.2020308

Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation

Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

* Corresponding author: Huan-Song Zhou

Received  January 2020 Revised  June 2020 Published  March 2021 Early access  August 2020

Fund Project: This work was supported by NFSC (Grant Nos. 11871387, 11931012) and partially by the fundamental Research Funds for the Central Universities (WUT: 2019IVA106, 2019IB009)

Let
$ a>0,b>0 $
and
$ V(x)\geq0 $
be a coercive function in
$ \mathbb R^2 $
. We study the following constrained minimization problem on a suitable weighted Sobolev space
$ \mathcal{H} $
:
$ \begin{equation*} e_{a}(b): = \inf\left\{E_{a}^{b}(u):u\in\mathcal{H}\ \mbox{and}\ \int_{\mathbb R^{2}}|u|^{2}dx = 1\right\}, \end{equation*} $
where
$ E_{a}^{b}(u) $
is a Kirchhoff type energy functional defined on
$ \mathcal{H} $
by
$ \begin{equation*} E_{a}^{b}(u) = \frac{1}{2}\int_{\mathbb R^{2}}[|\nabla u|^{2}+V(x)u^{2}]dx+\frac{b}{4}\left(\int_{\mathbb R^{2}}|\nabla u|^{2}dx\right)^{2}-\frac{a}{4}\int_{\mathbb R^{2}}|u|^{4}dx. \end{equation*} $
It is known that, for some
$ a^{\ast}>0 $
,
$ e_{a}(b) $
has no minimizer if
$ b = 0 $
and
$ a\geq a^{\ast} $
, but
$ e_{a}(b) $
has always a minimizer for any
$ a\geq0 $
if
$ b>0 $
. The aim of this paper is to investigate the limit behaviors of the minimizers of
$ e_{a}(b) $
as
$ b\rightarrow0^{+} $
. Moreover, the uniqueness of the minimizers of
$ e_{a}(b) $
is also discussed for
$ b $
close to 0.
Citation: Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308
References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$: Existence and multiplicity results, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[4]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.

[6]

P. D'Ancona and S. Spagnolo, Nonlinear perturbations of the Kirchhoff equation, Comm. Pure Appl. Math., 47 (1994), 1005-1029.  doi: 10.1002/cpa.3160470705.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, "Nauka", Moscow, 1989.

[9]

Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.

[10]

Y. GuoC. Lin and J. Wei, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIMA J. Math. Anal., 49 (2017), 3671-3715.  doi: 10.1137/16M1100290.

[11]

Y. GuoX. Zeng and H.-S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.

[12]

Y. GuoX. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.

[13]

H. GuoY. Zhang and H.-S. Zhou, Blow-up solutions for a Kirchhoff type elliptic equations with trapping potential, Commun. Pure Appl. Anal., 17 (2018), 1875-1897.  doi: 10.3934/cpaa.2018089.

[14]

H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.  doi: 10.1016/j.aml.2018.07.023.

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, $2^nd$ edition, Courant Institute of Mathematical Sciences, New York, 2011.

[16]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\Bbb{R}^3$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\Bbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.

[18]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[19]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbb R^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[20]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\Bbb R^3$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.

[21]

P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger-Newton problem, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 60, 41 pp. doi: 10.1007/s00526-020-1726-6.

[22]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA, 78 (1981), 6592-6595.  doi: 10.1073/pnas.78.11.6592.

[23]

W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.

[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978. 
[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576. 

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[27]

X. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.

[28]

X. Zeng and Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.

[29]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.

show all references

References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$: Existence and multiplicity results, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[4]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.

[6]

P. D'Ancona and S. Spagnolo, Nonlinear perturbations of the Kirchhoff equation, Comm. Pure Appl. Math., 47 (1994), 1005-1029.  doi: 10.1002/cpa.3160470705.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, "Nauka", Moscow, 1989.

[9]

Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.

[10]

Y. GuoC. Lin and J. Wei, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIMA J. Math. Anal., 49 (2017), 3671-3715.  doi: 10.1137/16M1100290.

[11]

Y. GuoX. Zeng and H.-S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.

[12]

Y. GuoX. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.

[13]

H. GuoY. Zhang and H.-S. Zhou, Blow-up solutions for a Kirchhoff type elliptic equations with trapping potential, Commun. Pure Appl. Anal., 17 (2018), 1875-1897.  doi: 10.3934/cpaa.2018089.

[14]

H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.  doi: 10.1016/j.aml.2018.07.023.

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, $2^nd$ edition, Courant Institute of Mathematical Sciences, New York, 2011.

[16]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\Bbb{R}^3$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\Bbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.

[18]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[19]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbb R^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[20]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\Bbb R^3$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.

[21]

P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger-Newton problem, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 60, 41 pp. doi: 10.1007/s00526-020-1726-6.

[22]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA, 78 (1981), 6592-6595.  doi: 10.1073/pnas.78.11.6592.

[23]

W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.

[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978. 
[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576. 

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[27]

X. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.

[28]

X. Zeng and Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.

[29]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.

[1]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[2]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[3]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[4]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[5]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[6]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[7]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[8]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[9]

Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096

[10]

Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations and Control Theory, 2020, 9 (2) : 469-486. doi: 10.3934/eect.2020020

[11]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[12]

Yongfu Wang. Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible Magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4973-4994. doi: 10.3934/cpaa.2020223

[13]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091

[14]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[15]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[16]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[17]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[18]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[19]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[20]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure and Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (285)
  • HTML views (239)
  • Cited by (0)

Other articles
by authors

[Back to Top]